Part 1: Observations of Global Properties
Part 2: Homogeneity and Isotropy; Many Distances; Scale Factor
Part 3: Spatial Curvature; Flatness-Oldness; Horizon
Part 4: Inflation; Anisotropy and Inhomogeneity
Bibliography
FAQ | Tutorial : Part 1 | Part 2 | Part 3 | Part 4 | Age | Distances | Bibliography | Relativity
Until a few hundred years ago, the Solar System and the Universe were equivalent in the minds of scientists, so the discovery that the Earth is not the center of the Solar System was an important step in the development of cosmology. Early in the 20th century Shapley established that the Solar System is far from the center of the Milky Way. So by the 1920's, the stage was set for the critical observational discoveries that led to the Big Bang model of the Universe.
1/Ho = (978 Gyr)/(Ho in km/sec/Mpc)Thus Hubble's value is equivalent to approximately 2 Gyr. Since this should be close to the age of the Universe, and we know (and it was known in 1929) that the age of the Earth is larger than 2 billion years, Hubble's value for Ho led to considerable skepticism about cosmological models, and motivated the Steady State model. However, later work found that Hubble had confused two different kinds of Cepheid variable stars used for calibrating distances, and also that what Hubble thought were bright stars in distant galaxies were actually H II regions. Correcting for these errors has led to a lowering of the value of the Hubble constant: there are now primarily two groups using Cepheids: the HST Distance Scale Key Project team (Freedman, Kennicutt, Mould etal) which gets 72+/-8 km/sec/Mpc, while the Sandage team, also using HST observations of Cepheids to calibrate Type Ia supernovae, gets 57+/-4 km/sec/Mpc. Other methods to determine the distance scale include the time delay in gravitational lenses and the Sunyaev-Zeldovich effect in distant clusters: both are independent of the Cepheid calibration and give values consistent with the average of the two HST groups: 65+/-8 km/sec/Mpc. These results are consistent with a combination of results from CMB anisotropy and the accelerating expansion of the Universe which give 71+/-3.5 km/sec/Mpc. With this value for Ho, the "age" 1/Ho is 14 Gyr while the actual age from the consistent model is 13.7+/-0.2 Gyr.
Hubble's data in 1929 is actually quite poor, since individual
galaxies have peculiar velocities of several hundred km/sec,
and Hubble's data only went out to 1200 km/sec. This has led
some people to propose
quadratic redshift-distance laws,
but the data shown below on Type Ia SNe from
Riess, Press and Kirshner (1996)
v = dD/dt = H*DThe fitted line in this graph has a slope of 64 km/sec/Mpc. Since we measure the radial velocity using the Doppler shift, it is often called the redshift. The redshift z is defined such that:
1 + z = lambda(observed)/lambda(emitted)where lambda is the wavelength of a line or feature in the spectrum of an object. In special relativity we know that the redshift is given by
1 + z = sqrt((1+v/c)/(1-v/c)) so v = cz + ...but the higher order corrections (the "...") in cosmology depend on general relativity and the specific model of the Universe.
The subscript "o" in Ho (pronounced "aitch naught") indicates the current value of a time variable quantity. Since the 1/Ho is approximately the age of the Universe, the value of H depends on time. Another quantity with a naught is to, the age of the Universe.
The linear distance-redshift law found by Hubble is compatible with
a Copernican view of the Universe: our position is not a special one.
First note that the recession velocity is symmetric: if A sees B receding,
then B sees that A is receding, as shown in this diagram:
The Hubble law generates a homologous expansion which does not change the shapes of objects, while other possible velocity-distance relations lead to distortions during expansion.
The Hubble law defines a special frame of reference at any point in the Universe. An observer with a large motion with respect to the Hubble flow would measure blueshifts in front and large redshifts behind, instead of the same redshifts proportional to distance in all directions. Thus we can measure our motion relative to the Hubble flow, which is also our motion relative to the observable Universe. A comoving observer is at rest in this special frame of reference. Our Solar System is not quite comoving: we have a velocity of 370 km/sec relative to the observable Universe. The Local Group of galaxies, which includes the Milky Way, appears to be moving at 600 km/sec relative to the observable Universe.
Hubble also measured the number of galaxies in different directions
and at different brightness in the sky. He found approximately
the same number of faint galaxies in all directions, even though
there is a large excess of bright galaxies in the Northern part of
the sky. When a distribution is the same in all directions,
it is isotropic.
And when he looked for galaxies with fluxes brighter
than F/4 he saw approximately 8 times more galaxies than he
counted which were brighter than F. Since a flux 4 times smaller
implies a doubled distance, and hence a detection volume that
is 8 times larger, this indicated that the Universe is close
to homogeneous (having uniform density) on large scales.
Of course the Universe is not really homogeneous and isotropic,
because it contains dense regions like the Earth. But it can still
be statistically homogeneous and isotropic, like this
24 kB simulated galaxy field, which is
homogeneous and isotropic after smoothing out small scale details.
Peacock and Dodds (1994, MNRAS, 267, 1020) have looked at the
fractional density fluctuations in the nearby Universe as a function of
the radius of a top-hat smoothing filter, and find:
The case for an isotropic and homogeneous Universe became much stronger
after Penzias and Wilson announced the discovery of the Cosmic Microwave
Background in 1965. They observed an excess flux at 7.35 cm wavelength
equivalent to the radiation from a blackbody with a temperature of
3.5+/-1 degrees Kelvin. [The Kelvin temperature scale has degrees of the
same size as the Celsius scale, but it is referenced at absolute zero,
so the freezing point of water is 273.15 K.]
A blackbody radiator is an object that absorbs any radiation that hits it,
and has a constant temperature.
Many groups have measured
the intensity of the CMB at different wavelengths.
Currently the best information on the spectrum of the CMB comes from the
FIRAS instrument on the
COBE
satellite, and it is shown below:
The temperature of the CMB is almost the same all over the sky.
The figure below shows a map of the temperature on a scale where
0 K is black and 3 K is white.
Another piece of evidence in favor of the Big Bang is the abundance of the light elements, like hydrogen, deuterium (heavy hydrogen), helium and lithium. As the Universe expands, the photons of the CMB lose energy due to the redshift and the CMB becomes cooler. That means that the CMB temperature was higher in the past. When the Universe was only a few minutes old, the temperature was high enough to make the light elements by nuclear fusion. The theory of Big Bang Nucleosynthesis predicts that about 1/4 of the mass of the Universe should be helium, which is very close to what is observed. The abundance of deuterium is inversely related to the density of nucleons in the Universe, and the observed value of the deuterium abundance suggests that there is one nucleon for every 4 cubic meters of space in the the Universe.
FAQ | Tutorial : Part 1 | Part 2 | Part 3 | Part 4 | Age | Distances | Bibliography | Relativity
© 1996-2017 Edward L. Wright. Last modified 21 Jul 2017