

7th Roma International Conference on AstroParticle Physics

Cherenkov Telescope Array: Science Goals & Current Status

RICAP 2018 (Roma, 07 Sept 2018)

The CTA Consortium¹, represented by Rene A. Ong²

2005-2018: VHE Astronomy Comes of Age

- Dominant expectation (pre-1990)
 - Will find the "cosmic ray" accelerators probably SNRs
- Reality (2018)
 - Astonishing variety of VHE † emitters
 - Within the Milky Way
 - Supernova remnants
 - Bombarded molecular clouds
 - Stellar binaries colliding wind & X-ray
 - Massive stellar clusters
 - Pulsars and pulsar wind nebulae
 - Supermassive black hole Sgr A*
 - Diffuse & extended emission
 - Extragalactic
 - Starburst galaxies
 - MW satellites
 - Radio galaxies
 - Flat-spectrum radio quasars
 - 'BL Lac' objects
 - Gamma-ray Bursts

Imaging Atm. Cherenkov Technique

Atm. Cherenkov showers:

- V. large light pool ~250 m diameter
- Rapid time structure ~ 5 ns
- Fully calorimetric
- Fine angular structure (< 1 arc-min)Imaging technique:
- Excellent shower reconstruction
- Very high background rejection

Well-demonstrated by current instruments: H.E.S.S., MAGIC, & VERITAS

But we have not reached limit of the technique!

Further improved by:

- More views of shower
- Higher resolution images
- Wider field-of-view

Larger area → More contained events, more images

Planning for the Future

What do we know, based on current instruments?

Great scientific potential exists in the VHE domain

Frontier astrophysics & important connections to particle physics

Imaging Cherenkov technique is very powerful

➤ Have not yet reached its full potential → large telescope array

Exciting science in both Hemispheres

Argues for an array in both S and N

Open Observatory gives substantial reward

Open data/access, MWL connections to get the best science

International partnerships required by scale/scope

Challenges associated with putting pieces together (i.e. funding streams, communities, etc.)

CTA Consortium

The Consortium developed CTA and will construct the bulk of the CTA components through in-kind contributions

Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Probing Extreme Environments

- Processes close to neutron stars and black holes
- Processes in relativistic jets, winds and explosions
- Exploring cosmic voids

Physics frontiers – beyond the Standard Model

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high-energy photons?
- Do axion-like particles exist?

SDMC: Zeuthen, Gemany

CTA Concept – S Array (Cta

Science Optimization under budget constraints

Telescope Types

Major sensitivity improvement & wider energy range

Angular & Energy Resolutions

Important for resolving morphology of sources

Important for spectral precision

Galactic Discovery Reach

Young pulsars and SNRs

 have typical brightness such that current instruments can see only relatively local objects

CTA will see whole Galaxy

Survey speed: x300 faster than current instruments

CTA as a Transient Factory

Big advantage over Fermi and HAWC in

energy range of overlap for ~min to ~ day timescales:

- Explosive transients (e.g. GRBs, GW events, etc.)
- AGN flares
- γ–ray binaries

Disadvantages:

- Limited FoV (more focused on follow-ups)
- Prompt reaction is critical

CTA capabilities → Key Science Project devoted to Transients

GRB (z=4.3) Light curve

CTA Phases & Timeline

- 2017-8: Hosting agreements, site preparations start
- 2019: Start of construction
- Construction period of ~6 years
- Initial science with partial arrays possible before construction end

CTA Science Program

- Open observatory
- Proposals for Guest Observer
 Programme essential for major
 community involvement
- All data on public archive after proprietary period (typically 1 year)
- ~40% time in Key Science Projects (KSPs), carried out by CTA Consortium

KSP Programme described in *Science with CTA* document arXiv:1709.07997 (soon to be published as a book)

Key Science Projects (KSPs)

KSPs discussed here

Dark Matter Programme

Existence of DM well established

- CTA will search for DM via indirect detection technique: WIMP annihilation or decay
- Targets: GC, dSphs, LMC, G. Clusters

Programme strategy focused on a possible detection:

- Key target: <u>Galactic centre halo</u> with deep observation (O 500h) to reach relic x-section over wide mass range
- Complementary data on other targets

See talks by Maria I. Bernardos (LMC) & Francesco Saturni (Dwarfs), this meeting

Cover WIMP masses above reach of direct detectors and the LHC

Galactic Plane Survey

- First high sensitivity survey at TeV energies
- Full-plane survey at arc-minute resolution
- Expect many100's of new sources, PWNe,
 SNRs and binaries → population studies
- Great potential for discovery of new phenomena
- Detailed view of diffuse γ-ray emission

Galactic Centre

Slide courtesy of L. Tibaldo

PeVatron Search

- What sources accelerate hadrons to the knee?
 - ➤ SNRs are standard paradigm, but only a handful provide strong evidence for hadronic acceleration so far, and only up to ~ 10 TeV.
- Search for PeVatrons (beyond the GC) via the > 100 TeV spectrum
 - Use GPS as finder and follow-up 5 brightest sources with no cut-off
 - Electrons' emission suppressed above 100 TeV (Klein-Nishina)
 - MWL information critical for identification

Extragalactic Survey

- Survey of ¼ sky to limiting sensitivity of 5 mCrab
- Connects to Galactic plane survey & covers Coma, Virgo, Cen A, & Fermi bubbles (N)
- Unbiased determination of blazar luminosity function
- Possibility of divergent pointing strategy: excellent for transients

Summary

VHE γ-ray astronomy is now a major research field

Great scientific potential and the power of the atmospheric Cherenkov technique -> CTA

Cherenkov Telescope Array (CTA)*

Outstanding sensitivity & resolution over wide energy range Open observatory with all data released to public Status: sites selected, full prototypes, close to construction start

Far reaching Key Science programme:

- <u>Dark Matter</u>. sensitive search for DM, focused on discovery
- Galactic plane survey (GPS): 1st at high resolution & v. high sensitivity
- Galactic Centre: rich region imaged by CTA at arc-min resolution
- PeVatron search: identify sources of PeV cosmic rays
- Extragalactic survey: blind survey of 1/4 sky to 5 mCrab sensitivity
- <u>Transients</u>: comprehensive program of transient follow-up

*We gratefully acknowledge financial support from the agencies and organizations listed here: http://www.cta-observatory.org/consortium_acknowledgments.