LEXIS-NEXIS® Academic Universe-Document
Copyright 1996 Times Mirror Company
Los Angeles Times
May 6, 1996, Monday,
Home Edition
SECTION: Part A; Page 1; Metro Desk
LENGTH: 1504 words
HEADLINE: GLIMPSES OF INFANT GALAXIES GIVE CLUES TO UNIVERSE'S PAST;
ASTRONOMY: NEW TECHNOLOGY PERMITS LOOK AT EVENTS OF 13 BILLION YEARS AGO.
MAJOR QUESTIONS MAY BE ANSWERED.
BYLINE: K.C. COLE, TIMES SCIENCE WRITER
BODY:
In a string of discoveries that have opened a door to our distant past, Caltech
and UCLA astronomers have caught sight of galaxies like our Milky Way just
coming into being, switching on their first stars.
These so-called protogalaxies offer astronomers a glimpse 13 billion years back
in time to when sun-like stars were beginning to ignite inside wombs of
hydrogen gas.
"It means we can study the natural history of the universe," said astrophysicist Matthew
Malkan of UCLA, who published one of the first sightings last summer.
"But this is even better than fossils because these are alive, and we're
watching them in their natural habitat."
By studying the infant galaxies as they evolve, astronomers hope to extract
clues to some of the most fundamental mysteries in physical science--including
how galaxies form, how the universe got its overall
structure, and how the chemical elements were created. Scientists have been
able to see as far as 85% of the way back to the beginning of the universe.
As recently as five years ago, astronomers didn't think galaxies existed so
early in the history of the universe, said Caltech astrophysicist Charles
Steidel, who has found dozens of the infant galaxies. The universe had not
cooled sufficiently for matter to congeal into large structures, they believed.
Even if these early galaxies did exist so far back, astronomers thought, they
would be too dim to see.
Now new technology--in particular the Keck telescope in Hawaii and the Hubble
Space Telescope--has changed all that.
"Before 1995, no protogalaxies were known," said Malkan.
"Now they're going to become routine."
Four groups of astronomers have seen glimmers of ancient galaxies since the
summer of 1995, each using a different strategy. Still, finding them remains
"monstrously difficult," said Malkan. Because the galaxies are so distant and dim, only the sharpest
telescopes and
most patient astronomers can tease them out.
To qualify as a galaxy, most of the gas in an interstellar cloud needs to be
turning into stars.
*
Since Malkan's group is looking for infant galaxies, it searches for the
signature of starlight that only comes from very hot, young, fast-burning
stars. Ultraviolet light from the stars pumps energy into hydrogen atoms in the
cloud, which then glow.
"It's just like a neon tube," Malkan said.
The light comes encoded with a wealth of information, much like a voice print.
A series of bright and dark lines spells out a visible imprint of the harmonic
tones that atoms sing out when strummed by specific frequencies of light. The
astronomer reads these lines like words on a page. The pattern they make gives
clear information about the
source of the light, its motion, its energy and even its history.
The light carries this information through the expanding universe for 13
billion years or so before it reaches the extinct volcano on Mauna Kea where
the Keck sits. The time lag means that these protogalaxies could well have
developed into mature galaxies like the Milky Way by the time the light reaches
Earth's shores. (If, perchance, astronomers in that mature galaxy 13 billion
light years away have recently found the Milky Way in their telescopes, they
would see only an infant galaxy in the first stages of creation.)
Not only are the astronomers looking back in time, they are seeing the origin
of chemistry. Because all atoms except hydrogen and helium are cooked up in
stars, watching the first stars light up is a way to watch the original atomic
alchemy that produced
everything from diamonds to dust.
"We used to just have theories about how the elements formed," Malkan said.
"Now we can see it happening."
The 13-billion-light-year journey has a noticeable effect on the light: it gets
stretched into longer wavelengths, some of which arrive on Mauna Kea as
infrared radiation. Malkan's group looks for these stretched light waves in
part because long waves bend more easily around interstellar dust (just as long
radio waves bend around cars).
But looking at infrared wavelengths also poses enormous problems. Infrared
radiation is heat, and even the warm glow of the night sky is enough to drown
out the light from a galaxy.
"We're looking for that blip of excess radiation that stands out from the
radiation coming from the sky," Malkan said.
Once they locate the
blip of radiation, the astronomers take a more detailed look to make sure they
are seeing what they think they're seeing. However, to see the patterns of
lines etched into the spectrum, the detector attached to the telescope in
effect spreads the light as if it were going through a prism, dimming it a
hundredfold.
While merely spotting a protogalaxy can be done by a number of powerful
telescopes, only the Keck can sort out the spectrum. So far the UCLA group has
pinned down one spectrum, and from the looks of it, the protogalaxy is
producing stars at the rapid rate of 130 per year.
"It's a burst of star birth," Malkan said.
Another recently discovered protogalaxy is even more prodigious, producing
perhaps a 1,000 suns a year. But this discovery, said University of Colorado
astronomer Erica
Ellingson, was completely serendipitous. Her team was measuring the velocities
of nearby galaxies with a smaller telescope on Mauna Kea when this one
"stuck out like a sore thumb," she said. If the galaxy turns out to be what it appears to be, it will be the
brightest galaxy ever observed--about a hundred times brighter than the Milky
Way.
*
Meanwhile, the Hubble Space Telescope picked up multiple images of what
scientists think is yet another protogalaxy--this one only about 60% of the way
back to the beginning of the universe.
While the object looks like a protogalaxy, it is even more interesting to
astronomers for a different reason. It is the clearest sighting yet of a
bizarre phenomenon predicted by Einstein known as gravitational lensing. In
effect, the immense gravity of a star group sitting between Earth and the
galaxy bends
light like a lens, greatly magnifying the image--and in this case, producing
multiple distorted copies like images in a fun house.
The galaxy, says Princeton's Wesley Colley, one of its discoverers, is probably
not the kind that will mature into a Milky Way.
"This may be a kind of weirdo," he said.
"It's large and it has a funny shape to it."
In contrast, Caltech's group is looking for very normal infant galaxies so they
can better understand the early development of our own Milky Way.
"We are looking for average things," Steidel said,
"rather than looking for bizarre mutations that make themselves easy to be found."
Steidel's approach, said Ellingson, is what all the astronomers should be
doing.
"It's very systematic, very scientific."
Steidel uses a technique that has picked out hundreds of possible protogalaxies
and a few
dozen sure ones. In effect, he looks for signs that the ultraviolet light from
the hot, young stars has been absorbed by the hydrogen cloud. Only light from
hot young stars would be so completely eaten up by the cloud, he says.
In a sense, Steidel is looking for the telltale shadow of the ultraviolet
light--or what he calls the
"ultraviolet dropout." This is essentially just the opposite of what Malkan is looking for; his door
is Malkan's window.
*
Because his group has found so many protogalaxies, Steidel is confident that
they will be able to tease out information about how the universe formed
galaxies and clusters of galaxies in the first place.
"The really exciting thing is, we can ask: What are they? How are they
clustered? For the first time we have actual observational evidence for how
structure develops in the universe."
Meanwhile, Malkan's group found evidence of carbon atoms in the galaxy he
looked at. Because carbon can only be created inside stars, and then
regurgitated into interstellar space to form other stars, the presence of
carbon suggests that these are not first-generation stars, but rather their
children.
"The carbon tells you this galaxy has already been making stars," said Malkan. If so, that means protogalaxy hunters may be able to look back
even farther to find their ultimate ancestors.
"We haven't pointed to anything that says: We have seen the very first moment of
the very first birth of the very first star. That would be awesome. And I think
we're going to see it someday."
Baby Pictures
The light from embryonic galaxies travels through the expanding universe for 13
billion years or so before it reaches the Hubble Telescope orbiting Earth. If
astronomers in those galaxies found the Milky Way in their telescopes, they
would see us the way we were 13 billion years ago,
an infant galaxy in the first stages of creation.
In the box above is an image of an infant galaxy taken by Hubble. Over the eons
it took the light to reach Earth, a mature galaxy, like that indicated by the
arrow, has probably developed.
Sources: NASA, Caltech
GRAPHIC: GRAPHIC-CHART: Baby Pictures, Los Angeles Times
LOAD-DATE: May 6, 1996