

## **Spectroastrometry and Imaging Science with Photonic Lanterns on Extremely Large Telescopes UCI** Caltech

Yoo Jung Kim<sup>1</sup>, Steph Sallum<sup>2</sup>, Jonathan Lin<sup>1</sup>, Yinzi Xin<sup>3</sup>, Barnaby Norris<sup>4</sup>, Christopher Betters<sup>4</sup>, Sergio Leon-Saval<sup>4</sup>, <sup>1</sup>Julien Lozi<sup>5</sup>, Sebastien Vievard<sup>5</sup>, Pradip Gatkine<sup>3</sup>, Olivier Guyon<sup>5</sup>, Nemanja Jovanovic<sup>3</sup>, Dimitri Mawet<sup>3</sup>, and Michael Fitzgerald<sup>1</sup> <sup>1</sup>University of California, Los Angeles, <sup>2</sup>University of California, Irvine, <sup>3</sup>California Institute of Technology, <sup>4</sup>The University of Sydney, <sup>5</sup>Subaru Telescope

# Photonic Lanterns are sensitive to small angular scales

A **photonic lantern (PL)** is a tapered waveguide that gradually transitions from a multimode fiber (MMF) geometry to a bundle of single mode fibers (SMFs), efficiently converting multimode light into multiple single-moded beams.



The outputs in SMFs have information on the input scene.

### Potential science cases of PLs on an ELT?

## **Application 1: Spectroastrometry**



Outputs of a PL can be fed into a SMF-based spectrometer for a stable & high-throughput high-resolution spectroscopy.

Relative intensities in SMF outputs can be used to determine **2D** spectroastrometric signals.

Spectroastrometry: measuring the center of light as a function of wavelength, a technique for studying objects whose morphology changes with wavelength, on scales smaller than the PSF size.

Spectroastrometric S/N ~  $\sqrt{N_{phot}}$   $\frac{\text{Center of light shift}}{\lambda/D} \propto D^2$ 

Possible targets include:

## **Application 2: Interferometric Imaging**

UCLA

THE UNIVERSITY OF SYDNEY

Outputs of a PL can be fed into a backend photonic integrated circuit beam combiner to learn about coherence properties of the source field



### 1) Exomoons

light 0.4

7.0 Ter

Ů.0

of



Spectroastrometric signals from bright exomoons (tidally heated, large) around direct-imaged planets may be detected.

### 2) Broad line region of AGNs

Wavelength (um)



#### aperture masks) in small FOV, without blocking light with masks



Lantern modes: mode basis at the PL entrance, found by back-propagating SMF modes at the PL exit

### PL visibilities are sensitive to **asymmetries**, compared to separatedaperture visibilities.



velocity (km/s)

References

#### Broad line regions of AGNs can be spatially resolved using 2D

astrometric

signals are

expected

#### spectroastrometric signals of PLs.

+ accreting protoplanets, high contrast binaries

Contact: yjkim@astro.ucla.edu

6-port P Asymmetric Port numbers

#### Possible science cases include: search for close-in orbit exoplanets,

imaging inner region circumstellar disks

Agol, E., Jansen, T., Lacy, B., et al., 2015, ApJ, 812, 5 Lin, J., Jovanovic, N., Fitzgerald, M. P., 2021, JOSA B, 38, A51 Baron, F., Monnier, J.~D., Kloppenborg, B., 2010, SPIE proceedings, 7734, 773421 Lin, J., Fitzgerald, M.~P., Xin, Y., et al., 2022, JOSA B, 39, 2643 Leon-Saval, S.~G., Argyros, A., Bland-Hawthorn, J., 2013, Nanophotonics, 2, 429 Peters-Limbach, M.~A., Turner, E.~L., 2013, ApJ, 769, 98 Kim, Y.~J., Sallum, S., Lin, J., et al., 2022, SPIE proceedings, 12184, 1218449 Stern, J., Hennawi, J.~F., Pott, J.-U., 2015, ApJ, 804, 57