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Cosmology has long been a fairly speculative field of study, short on data and long on
theory. This has inspired some interesting aphorisms:

• Cosmologist are often in error but never in doubt - Landau.

• There are only two and a half facts in cosmology:

1. The sky is dark at night.

2. The galaxies are receding from each other as expected in a uniform expansion.

3. The contents of the Universe have probably changed as the Universe grows older.

Peter Scheuer in 1963 as reported by Malcolm Longair (1993, QJRAS, 34, 157).

But since 1992 a large number of facts have been collected and cosmology is becoming
an empirical field solidly based on observations.

1. Cosmological Observations

1.1. Recession velocities

Modern cosmology has been driven by observations made in the 20th century. While
there were many speculations about the nature of the Universe, little progress was made until
data were obtained on distant objects. The first of these observations was the discovery of
the expansion of the Universe. In the paper “THE LARGE RADIAL VELOCITY OF NGC
7619” by Milton L. Humason (1929) we read that

“About a year ago Mr. Hubble suggested that a selected list of fainter and more distant
extra-galactic nebulae, especially those occurring in groups, be observed to determine, if
possible, whether the absorption lines in these objects show large displacements toward
longer wave-lengths, as might be expected on de Sitter’s theory of curved space-time.

During the past year two spectrograms of NGC 7619 were obtained with Cassegrain
spectrograph VI attached to the 100-inch telescope. This spectrograph has a 24-inch colli-
mating lens, two prisms, and a 3-inch camera, and gives a dispersion of 183 Angstroms per
millimeter at 4500. The exposure times for the spectrograms were 33 hours and 45 hours,
respectively. The radial velocity from these plates has been measured by Miss MacCormack,
of the computing division, and by myself, the weighted mean value being +3779 km./sec.”



Note that NGC 7619 is a 12th magnitude galaxy and the observational limit now is
B > 24th magnitude, and especially note the total exposure time of 78 hours!

“A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-
GALACTIC NEBULAE by Edwin Hubble (1929) takes the radial velocities for 24 galaxies
with “known” distances and fits them to the form

v = Kr +X cosα cos δ + Y sinα cos δ + Z sin δ (1)

where K is the coefficient relating velocity to distance in a linear velocity distance law,
while (X, Y, Z) are the contribution of the solar motion to the radial velocity. Hubble
found a solution corresponding to solar motion of 280 km/sec toward galactic coordinates
l = 65, b = 18. Modern determinations give 308 km/sec toward l = 105, b = 7 (Yahil,
Tammann & Sandage, 1977), so this part of the fit has remained quite stable. Figure 1 shows
the velocities corrected for the motion of the galaxy, v−(X cosα cos δ+Y sinα cos δ+Z sin δ),
plotted vs. distance. But the value of K = 500 kms−1 Mpc−1derived by Hubble in 1929 is
much too large, because his distances were much too small. Nonetheless, this discovery that
distant galaxies have recession velocities proportional to their distances is the cornerstone of
modern cosmology.

In modern terminology, Hubble’s K is denoted H◦, and called the Hubble constant. Since
it is not really a constant, but decreases as the Universe gets older, some people call it the
Hubble parameter.

This velocity field, ~v = H◦~r, has the very important property that its form is unchanged
by a either a translation or a rotation of the coordinate system. To have a relation unchanged
in form during a coordinate transformation is called an isomorphism. The isomorphism
under rotations around the origin is obvious, but to see the effect of translations consider
the observations made by astronomers on a galaxy A with position ~rA relative to us and a
velocity ~vA = H◦~rA relative to us. Astronomers on A would measure positions relative to
themselves ~r′ = ~r − ~rA and velocities relative to themselves, ~v′ = ~v − ~vA. But

~v′ = H◦~r −H◦~rA = H◦(~r − ~rA) = H◦~r
′ (2)

so astronomers on galaxy A would see the same Hubble law that we do.

Thus even though we see all galaxies receding from us, this does not mean that we are
in the center of the expansion. Observers on any other galaxy would see exactly the same
thing. Thus the Hubble law does not define a center for the Universe. Other forms for
the distance-velocity law do define a unique center for the expansion pattern: for example
neither a constant velocity ~v = v◦r̂ nor a quadratic law ~v = Mr2r̂ are isomorphic under
translations.

In actuality one finds that galaxies have peculiar velocities in addition to the Hubble
velocity, with a magnitude of ±500 km/sec. In order to accurately test the Hubble law, one
needs objects of constant or calibratable luminosities that can be observed at distances large
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Fig. 1.— Hubble’s data in 1929.
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Fig. 2.— Distance vs. redshift for Type Ia Sne
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enough so the Hubble velocity is >> 500 km/sec. Type Ia supernovae are very bright, and
after a calibration based on their decay speed, they have very small dispersion in absolute
magnitude. Riess, Press & Kirshner (1996) find that slope in a fit of velocities to distance
moduli, log v = a(m−M)+ b, is a = 0.2010±0.0035 while the Hubble law predicts a = 1/5.
Thus the Hubble law has a good theoretical basis and is well-tested observationally.

The actual value of the Hubble constant H◦ is less well determined since it requires the
measurement of absolute distances instead of distance ratios. But the situation is getting
better with fewer steps needed in the “distance ladder”. Currently the best Hubble constant
data come from Riess et al. (2011, arXiv:1103.2976) which gives 73.8 ± 2.4 km s−1 Mpc−1.
Other measures include the DIRECT project double-lined eclipsing binary in M33 (Bonanos
et al. 2006, astro-ph/0606279), Cepheids in the nuclear maser ring galaxy M106 (Macri
et al. 2006, astro-ph/0608211), and the Sunyaev-Zel’dovich effect (Bonamente et al. 2006).
These papers gave values of 61 ± 4, 74 ± 7 and 77 ± 10 km s−1 Mpc−1. Assuming that the
uncertainties in these determinations are uncorrelated and equal to 10 km s−1 Mpc−1after
allowing for systematics, the average value for H◦ is 71 ± 6 km s−1 Mpc−1. This average
is consistent with the value from Riess et al. (2011). The most likely range now is the
70 ± 2.2 km s−1 Mpc−1from CMB anisotropy studies based on the Hinshaw et al. (2012,
arXiv:1212.5226) fit to the 9 year WMAP data alone, assuming that the Universe follows
the flat ΛCDM model. However, the Planck 2015 Results Paper I (arxiv:1502.01582) gives
67.8 ± 0.9 km s−1 Mpc−1from CMB data alone (Table 9). Note that the weighted mean of
Riess et al. (2011) and Planck is 68.54 ± 0.85 km s−1 Mpc−1, and the χ2 of the fit to the
mean is 5.48 with 1 degree of freedom, corresponding to a 2.34σ discrepancy which would
be exceeded only 1% of the time by chance, so there may well be systematic errors lurking
in one or both of the methods. We will discuss many ways of measuring H◦ later in the
course. In many older cosmological papers the uncertain value of H◦ is factored out using
the notation h = H◦/100 in the standard units of km s−1 Mpc−1. Thus if a galaxy has a
Hubble velocity of 1500 km/sec, its distance is 15/h Mpc.

While units of km s−1 Mpc−1 are commonly used for H◦, the metric units would be
second−1. The conversion is simple:

H◦ = 100 kms−1 Mpc−1 =
107 cm/sec

3.085678 × 1024 cm
= 3.2 × 10−18 s−1 =

1

9.78 Gyr
(3)

1.2. Age

Another observable quantity in the Universe is the age of the oldest things in it. There
are basically three ways to find ages for very old things. The first and best known example is
the use of the HR diagram to determine the age of a star cluster. The luminosity of the stars
just leaving the main sequence (main sequence turnoff = MSTO) varies like L ∝ M4, so the
main sequence lifetime varies like t ∝ M−3 ∝ L−3/4. This means that a 10% distance error
to globular cluster gives a 15-20% error in the derived age. Distances to globular clusters
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are determined from the magnitudes of RR Lyrae stars, and there are two different ways
to estimate their absolute magnitudes. Using the statistical parallax of nearby RR Lyrae
stars gives an age for the oldest globular cluster of 18 ± 2 Gyr, while using the RR Lyrae
stars in the LMC (Large Magellanic Cloud) as standards gives an age of 14 ± 2 Gyr. Using
HIPPARCOS observations of nearby subdwarfs to calibrate the main sequence of globular
clusters gives 11.7 ± 1.4 Gyr (Chaboyer, Demarque, Kernan & Krauss 1998, Ap,J 494, 96).
The globular clusters needed some time to form, so I will take t◦ = 12.2 ± 1.5 Gyr for this
method.

The second technique for determining ages of stellar populations is to look for the oldest
white dwarf. White dwarves are formed from stars with initial masses less than about 8 M⊙
so the first WDs form after about 20 million years. Once formed, WDs just get cooler and
fainter. Thus the oldest WDs will be the least luminous and coolest WDs. These are the
hardest to find, of course. However, there appears to be a sharp edge in the luminosity
function of white dwarves, corresponding to an age of about 11 Gyr. Since these are disk
stars, and the stars in the disk formed after the halo stars and globular clusters, this means
that the age of the Universe is at least 12 Gyr, and I will take t◦ = 12.5 ± 1.5 Gyr. Brad
Hansen (of UCLA) et al.(2004, astro-ph/0401443) give 12.1±0.9 Gyr for the age of the white
dwarf population in the globular cluster M4. One pitfall in this method is the phenomenon
of crystalization in white dwarf nuclei. When the central temperature get low enough, the
nuclei arrange themselves into a regular lattice. As this happens, the WDs remain for a long
time at a fixed temperature and luminosity. After the heat of solidification is radiated away,
the WD cools rapidly. Thus there will naturally be an edge in the luminosity function of
WDs caused by crystalization. While the best evidence is that the oldest WDs haven’t yet
started to crystalize, the expected luminosity of a solidifying WD is only slightly below the
observed edge.

The third way to measure the age of the Universe is to measure the age of the chemical
elements. This method relies on radioactive isotopes with long half-lives. It is very easy
to make a precise measurement of the time since a rock solidified, and by applying this
technique to rocks on the Earth an oldest age of 3.8 Gyr is found. But rocks that fall out of
the sky, meteorites, are older. Given that 87Rb decays to 87Sr with a half-life of 47.5 Gyr, and
that rubidium and strontium collect in different minerals when a rock solidifies, it is possible
to get a precise reading of how long ago a rock was last molten. The Allende meteorite is
well studied and has an age of 4.554 Gyr. It is much more difficult to get an age for the
Universe as a whole, since one has to assume a model for the star formation history and
for stellar nucleosynthesis yields. For example, the ratio of 187Re to 187Os is less than that
predicted by nucleosynthesis calculations, and 187Re is radioactive. The derived average age
of the elements is 9.3± 1.5 Gyr. Assuming that the elements in the Solar System (since the
187Re:187Os ratio can only be measured in the Solar System) were made uniformly between
the age of the Universe t◦ and the formation of the Solar System, then t◦ = 14 ± 3 Gyr.
Dauphas (2005, Nature, 435, 1203) uses the 238U:232Th ratio in old stars and in the Earth
to derive an age of t◦ = 14.5+2.8

−2.2 Gyr.
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The weighted mean of 12.2 ± 1.5, 12.5 ± 1.5, 14 ± 3 and 14.5+2.8
−2.2 is 12.9 ± 0.9 Gyr.

The dimensionless product H◦t◦ can be used to discriminate among cosmological models.
Taking t◦ = 12.9± 0.9 Gyr (the weighted mean of real age measurements) and H◦ = 73.8±
2.4 km s−1 Mpc−1from supernovae, this product is

H◦t◦ =
ht◦

9.78 Gyr
= 0.97 ± 0.08. (4)

A more model dependent result comes from fits to CMB data. A flat ΛCDM model
fit to the WMAP 9 year data, the South Pole Telescope data, and the Atacama Cosmology
Telescope data gives t◦ = 13.742 ± 0.077 Gyr and H◦ = 70.5 ± 1.6 km s−1 Mpc−1(Hinshaw
et al. (2012, arXiv:1212.5226, Table 4, +eCMB column). These values give H◦t◦ = 0.991 ±
0.023. The Planck 2015 Results I paper gives t◦ = 13.799 ± 0.038 Gyr and H◦ = 67.8 ±
0.9 km s−1 Mpc−1, so H◦t◦ = 0.957 ± 0.013.

1.3. Number counts

While it took weeks of exposure time to measure the redshifts of galaxies in the 1920’s,
it was much easier to photograph them and measure their magnitudes and positions. An
important observable is the number of sources brighter than a given flux per unit solid angle.
This is normally denoted N(S) or N(> S), where S is the limiting flux, and N is the number
of objects per steradian brighter than S. In principle N(S) is a function of direction as well
as flux. In practice, for brighter galaxies, there is a very prominent concentration in the
constellation Virgo, known as the Virgo cluster, and toward a plane is the sky known as the
supergalactic plane. This larger scale concentration is known as the Local Supercluster.

However, as one looks at fainter and fainter galaxies, the number of galaxies per steradian
gets larger and larger, and also much more uniform across the sky. For optical observations
the dust in the Milky Way creates a “zone of avoidance” where only a few galaxies are seen,
but this effect is not seen in the infrared observations from the IRAS experiment. Thus it is
reasonable to postulate that the Universe is isotropic on large scales, since the number counts
of faint galaxies are approximately the same in all directions outside the zone of avoidance.
Isotropic means the same in all directions. Mathematically isotropic means isomorphic under
rotations.

The slope of the number counts, d lnN/d lnS, is another observable quantity. If the
sources being counted are uniformly distributed throughout space, than observing to a flux
limit 4 times lower will allow one to see object twice as far away. But this volume is 8 times
larger, so the slope of the source counts is − ln 8/ ln 4 = −3/2. Hubble observed that the
source counts followed this law rather well, indicating that the galaxies beyond the Local
Supercluster but within reach of the 100 inch telescope and old photographic plates were
uniformly distributed in space. This implies that the Universe is homogeneous on large scales.
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Fig. 3.— The brick wall on the left is a homogeneous but not isotropic pattern, while the
pattern on the right is isotropic (about the center) but no homogeneous.

Just as homogenized milk is not separated into cream and skim milk, a homogeneous Universe
is not separated into regions with different properties. Mathematically homogeneous means
isomorphic under translations.

It is possible be isotropic without being homogeneous, but the isotropy will only hold
at one or two points. Thus a sheet of polar coordinate graph paper is in principle isotropic
around its center, but it is not homogeneous. The meridians on a globe form an isotropic
pattern around the North and South poles, but not elsewhere.

It is also possible to be homogeneous but not isotropic. Standard square grid graph paper
is in principle homogeneous but it is not isotropic since there are four preferred directions.
A pattern like a brick wall is homogeneous but not isotropic. Note that a pattern that is
isotropic around three or more points is necessarily homogeneous.

1.4. CMBR

In 1964 Penzias & Wilson found an excess of radio noise in the big horn antenna at
Bell Labs. This excess noise was equivalent to 3.5 ± 1 K. This means that a blackbody
with T = 3.5 K would produce the same amount of noise. A blackbody is an object that
absorbs all the radiation that hits it, and has a constant temperature. Penzias & Wilson
were observing 4 GHz (λ = 7.5 cm), and if the radiation were truly a blackbody, then it
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Fig. 4.— CMB Spectrum Measured by FIRAS on COBE.

would follow the Planck radiation law

Iν = Bν(T ) = 2hν
(ν

c

)2 1

exp(hν/kT ) − 1
(5)

for all frequencies with a constant T . Here Iν is the intensity of the sky in units of
erg/cm2/sec/sr/Hz or W/m2/sr/Hz or Jy/sr. Actually this blackbody radiation was first
seen at the same 100 inch telescope used to find the expansion of the Universe in the form
of excitation of the interstellar cyanogen radical CN into its first excited state. This was
seen in 1939 but the resulting excitation temperature at λ = 2.6 mm of 2.3 ± 1 K was
not considered significant. After 1964, many groups measured the brightness of the sky
at many different wavelengths, culminating in Mather et al. (1999, 512, 511), which finds
T = 2.72528 ± 0.00065 K for 0.5 mm to 5 mm wavelength. Fixsen (2009, arXiv:0911.1955)
used a hybrid approach to find T : WMAP gave the CMB dipole amplitude in km/sec, while
FIRAS measured the spectrum of the dipole anisotropy. The integral of the dipole anisotropy
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Fig. 5.— Left: true contrast CMB sky. 0 K = white, 4 K = black. Middle: contrast enhanced
by 400X, monopole removed, showing dipole and Milky Way. Right: contrast enhanced by
6,667X, with monopole, dipole and Milky Way removed.

spectrum goes like (v/c)σSBT
4 so T can be found, giving T = 2.726 ± 0.001 K. The grand

average is T = 2.72548± 0.00057 K.

This blackbody radiation was predicted by Gamow and his students Alpher and Herman
from their theory for the formation of all the chemical elements during a dense hot phase
early in the history of the Universe. Alpher & Herman (1948) predict a temperature of 5 K.
But this theory of the formation of elements from 1 to 92 failed to make much of anything
heavier than helium because there are no stable nuclei with atomic weights of 5 or 8. Thus
the successive addition of protons or neutrons is stopped at the A = 5 gap. Because of this
failure, the prediction of a temperature of the Universe was not taken seriously until after
Penzias & Wilson had found the blackbody radiation. A group at Princeton led by Dicke was
getting set to try to measure the radiation when they were scooped by Penzias & Wilson.
When Dicke started this project he asked a student to find previous references and the only
prior measurement of the temperature of the sky that had been published was T < 20 K
by Dicke himself. And this paper was published in the same volume of the Physical Review

that had Gamow’s first work.

The CMBR (Cosmic Microwave Background Radiation) is incredibly isotropic. Except
for a dipole term due to the Sun’s motion relative to the cosmos (like the (X, Y, Z) terms in
Hubble’s fit), the temperature is constant to 11 parts per million across the sky.

1.5. CMB Temperature vs. Redshift

The temperature of the CMB was first measured (but not recognized) using the level
populations in interstellar molecules. This approach can be applied to quasar absorption
line systems, allowing one to measure TCMB at different redshifts. Figure 6 shows results vs.

redshift, clearly consistent with the prediction of the Big Bang, TCMB = T◦(1 + z).
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Fig. 6.— The CMB temperature measured using absorption line systems. The blue line
shows a constant T as predicted by the steady state model, while the red line show TCMB =
T◦(1 + z) as predicted by the Big Bang.

1.6. Time Dilation vs. Redshift

One consequence of the standard interpretation of the redshift is that the durations
of lightcurves should be increased when looking at high redshift objects. This has been
confirmed in the sample of 61 high redshift supernovae from Goldhaber and the Supernova
Cosmology Project (2001, astro-ph/0104382) as shown in Figure 7. The width factor w is
the ratio of the duration of the observed decay to a nominal decay duration. The stretch
factor used to calibrate the Type Ia brightness is given by s = w/(1 + z). If the population
of fast vs. slow decayers does not change with redshift one expects w = (1+ z). An L1 norm
(least sum of absolute values of errors) fit to the Goldhaber et al. data is shown and has the
coefficients

w = 0.985(1 + z)1.045±0.089. (6)

An L1 fit is robust against outliers in the data, and the uncertainty in the exponent was
evaluated using the half-sample bootstrap method. Clearly this fit is perfectly consistent
with the Big Bang prediction of w = (1+ z) and 11 standard deviations away from the tired
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light prediction of w = (1 + z)0.
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2. Cosmological Principle

Because the CMBR is so isotropic, and since isotropic at more than two points implies
homogeneity, and taking the Copernican view that the Earth is not in a special place in the
cosmos, we come to promulgate the cosmological principle:

The Universe is Homogeneous and Isotropic

Since galaxies are receding from each other, the average density of the Universe will
be decreasing with time, unless something like the Steady State model were correct [but
it’s not]. This means that we have to be careful about how we define homogeneity. We
have to specify a cosmic time and state that the Universe is homogeneous only on slices
through space-time with constant cosmic time. This sounds like it contradicts one of the
tenets of special relativity, which states that different observers moving a different velocities
will disagree about whether events are simultaneous. However, an observer traveling at 0.1 c
relative to us would disagree even more about the Hubble law, since she would see blueshifts
of up to 30,000 km/sec on one side of the sky, and redshifts greater than 30,000 km/sec on
the other side of the sky. Thus we can define a special class of observers, known as comoving
observers, who all see the Hubble law for galaxy redshifts in its simple form. When we ask
each comoving observer to determine the local density ρ at a time when the measured age
of the Universe is t, then homogeneity means that this ρ is a function only of t and does not
depend on the location of the observer.
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3. Geometry

The implications of the Cosmological Principle and the Hubble law are substantial. Let
the distance between two galaxies A and B at time t be DAB(t). This distance has to
be measured by comoving observers all at time t. Once distances are large enough so the
light travel time becomes important, this distance must be measured by several comoving
observers strung out along the way between A and B. For example, the path from A to B
might be A → 1 → 2 . . . → B. An observer on galaxy A can measure the distance DA1(t)
by sending out a radar pulse at time tS = t − DA1(t)/c, and receiving the echo at time
tR = t+DA1(t)/c. The distance is found using D = c(tR − tS)/2 as in all radars. Of course
since the observer on A is trying to measure the distance, she would have to either guess
the correct time, or else send out pulses continually with each pulse coded so the echo can
be identified with the correct transmit time. In a time interval t to t + ∆t, each of these
small subintervals grows to (1 +H∆t) times its initial value. Thus for any pair of galaxies
the distance grows by a factor (1 +H∆t) even if the distance DAB is quite large. Thus the
equation

v =
dDAB

dt
= HDAB (7)

which is the Hubble law is exactly true even when the distances are larger than c/H and
the implied velocities are larger than the speed of light. This is a consequence of the way
distances and times are defined in homogeneous cosmologies, which are consistent with the
locally inertial coordinates of a comoving observer only for small distances.

A useful consequence of the Hubble law is thatDAB(t), which depends on three variables,
can be factored into a time variable part a(t) and a fixed part XAB which depends on the
pair of objects but not on the time:

DAB(t) = a(t)XAB (8)

where a(t) is the cosmic scale factor and applies to the whole Universe, while XAB is the
comoving distance between A and B. Obviously one can multiply all the X’s by 10 and
divide a(t) by 10 and get the same D’s, so a convention to fix the scale of the scale factor is
needed. We will usually use a(t◦) = 1 where t◦ is the current age of the Universe. Of course
that means that our calculations done today will be off by one part in 4 trillion tomorrow,
but this error is so small we ignore it.

The common growth factor (1+H∆t) discussed earlier can be written as a(t+∆t)/a(t).
Therefore the Hubble constant can be written as

H =
1

a

da

dt
. (9)

Unless a ∝ eHt, the Steady State model, the value of the Hubble constant will change with
time. Thus some people call it the Hubble parameter.
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3.1. Relation between z and a(t)

If the Hubble velocities vAB = dDAB/dt can be larger than c, we probably should not
use the special relativistic Doppler formula for redshift,

λobs

λem
= 1 + z =

√

1 + v/c

1 − v/c
. (10)

What technique can we use instead? Let’s go back to our series of observers A → 1 →
2 . . . → n → B. Galaxy B emits light at time tB = tem and wavelength λem. This reaches
observer n at time tn = tem + DnB(tem)/c + . . .. This distance is small so we can use the
first-order approximation

λn

λB
= 1 +

v

c
= 1 +

HDnB(tem)

c
= 1 +H(tn − tem) (11)

But the rightmost side is just a(tn)/a(tem). The same argument can be applied to show that

λn−1

λn
=
a(tn−1)

a(tn)
(12)

Finally we get to galaxy A at time tobs = tA, and can write

1 + z =
a(tA)

a(t1)

a(t1)

a(t2)
· · · a(tn)

a(tB)
=
a(tA)

a(tB)
=
a(tobs)

a(tem)
(13)

This formula only applies to the redshifts of comoving observers as seen by comoving ob-
servers. It is always possible to have a spaceship traveling at v/c = 0.8 one light-day away
from the Solar System emit light yesterday which we see today with a redshift of 1 + z = 3
even though a(tobs)/a(tem) ≈ 1.

Because of the relationship between redshift z and a(t) and hence t, we often speak of
things happening at a given redshift instead of at a given time. This is convenient because
the redshift is observable and usually has a great effect on the rates of physical processes.

3.2. Metrics

In General Relativity it is important to realize that coordinates are just used as names
for events. An event is the analog of a point in space-time. We can name an event S, or
R, or Z, or we can give it a name using 4 real variables, typically x, y, z and t. But we can
change between different systems of coordinates, and GR gives us the rules for necessary
transformations. In particular, GR defines a metric that is used to determine measurable
distances and time intervals from coordinate differences. For example, in plane Euclidean
geometry, the metric is

ds2 = dx2 + dy2 (14)
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We can write this as

ds2 = gxxdx
2 + gxydxdy + gyxdydx+ gyydy

2 (15)

with gxx = gyy = 1 and gxy = gyx = 0. This two index tensor gµν is called the metric. If you
transform to rotated and shifted coordinates

x′ = a+ x cos θ − y sin θ

y′ = b+ x sin θ + y cos θ (16)

then ds2 = dx′2 +dy′2 which has the same form as Eqn (14). Thus translations and rotations
are isomorphisms of Euclidean geometry. But other coordinate transformations do change
the form of the metric. For example, in polar coordinates

ds2 = dr2 + r2dθ2 (17)

but this metric still describes Euclidean plane geometry. The metric

ds2 = dθ2 + sin2 θdφ2 (18)

is differs only slightly from Eqn (17) but it describes a spherical geometry which is non-
Euclidean. The tools of tensor calculus show how to compute the curvature of manifolds
described by a metric, and determine whether the manifold is really curved or not.

The metrics needed in cosmology have to be homogeneous and isotropic. Homogeneity
means that translations in all three spatial directions have to be isomorphisms. Isotropy
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means that rotations about all three axes have to be isomorphisms. These powerful restric-
tions mean that there are only three possible spatial manifolds that satisfy the cosmological
principle. These can all be described by the metric

ds2 = R2
◦

(

dr2

1 − kr2
+ r2

[

dθ2 + sin2 θdφ2
]

)

(19)

Here R◦ is the radius of curvature of the space, which has to be the same everywhere by
homogeneity, and k = +1, 0 or −1. For k = 0 this metric describes Euclidean space, while
k = +1 describes a 3-dimensional spherical space (the surface of a 4-dimensional ball –
but the crutch of thinking about curved spaces embedded in a higher dimensional space is
not very useful.) For k = −1 the space has negative curvature. Note that there are many
different coordinate systems that can be used to describe the same geometry. By setting
ψ =

∫

dr/
√

1 − kr2 we get

ds2 = R2
◦



dψ2 +







sin2 ψ
ψ2

sinh2 ψ







[

dθ2 + sin2 θdφ2
]



 (20)

where the cases from top to bottom are for k = +1, 0 and −1. Yet another form for the
homogeneous and isotropic spatial metrics can be found by analogy to the stereographic map
projection. This is a projection from one end of a diameter of a sphere to a plane tangent
to the other end of the diameter, as shown in Figure 8. If θ is the angle from the tangent
point to a point on the sphere, then the angle at the projection point is θ/2 and the radius
on the projection plane is r = 2 tan(θ/2). Thus dr = sec2(θ/2)dθ so the radial component
of the metric, ds2 = dθ2, can be written

ds2 =
dr2

sec4(θ/2)
=

dr2

(1 + r2/4)2
(21)

The tangential component of the metric on the sphere, ds2 = sin2 θdφ2, can be written as

ds2 =
r2dφ2

sec4(θ/2)
= cos4(θ/2)4 tan2(θ/2)dφ2 = [2 cos(θ/2) sin(θ/2)]2dφ2 (22)

Therefore the metric of a sphere can be written

ds2 =
dx2 + dy2

(1 + (x2 + y2)/4)2
(23)

where x and y are the coordinates on a stereographic map. The 3-dimensional version of
this is

ds2 = R2
◦
dx2 + dy2 + dz2

(1 + kr2/4)2
(24)

where k = +1, 0 or −1 as before. Note that because the angle at the projection plane is θ/2,
the angle between the projected ray and the sphere normal is also θ/2, so the distortion due to
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Fig. 9.— Projection used to make a “stereographic” map from a hyperboloid onto a circle.

passing obliquely through the sphere is exactly canceled when passing obliquely through the
projection plane. Thus this map is a conformal map: shapes of small regions are preserved.
This implies that a small circle is mapped into a small circle, and not into an ellipse. In fact,
any circle, no matter how big, is mapped into a circle. This includes great circles, which are
the geodesics in this space.

The k = −1 version corresponds to projecting through a plane tangent to the vertex
of one branch of the hyperbola from the other vertex of the hyperbola. The radius on the
projection plane is given by

r =
2 sinhψ

1 + coshψ

1 − r2

4
=

1 + 2 coshψ + cosh2 ψ − sinh2 ψ

(1 + coshψ)2
=

2

1 + coshψ

dr =

(

2 coshφ

1 + coshψ
− 2 sinh2 φ

(1 + coshψ)2

)

dψ

=
2dψ

1 + coshψ

ds = dψ =
dr

1 − r2/4
(25)

The tangential part of the k = −1 metric, ds2 = sinh2 ψdθ2, becomes

ds2 =
r2dθ2

(1 − r2/4)2
(26)
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so the total metric is

ds2 =
dr2 + r2(dθ2 + sin2 θdφ2)

(1 − r2/4)2
=

dx2 + dy2 + dz2

(1 − (x2 + y2 + z2)/4)2
(27)

where the last step just substitutes Cartesian (x, y, z) coordinates for the spherical polar
coordinates r, θ, φ). This is the same as the k = −1 metric given above.

Note that the stereographic map of the finite spherical space is an infinite space, while
the stereographic map of the infinite k = −1 negatively curved space is confined to a ball of
radius 2.

Normally one visualizes the hyperbolic k = −1 space as a saddle-shaped thing. But here
we have projected from a convex hyperboloid of revolution in Figure 9 onto a plane. The
reason is that we have embedded the k = −1 space as the surface x2 +y2 +z2−w2 = −1 in a
flat Minkowski space with metric ds2 = dx2+dy2+dz2−dw2. This embedding of the k = −1
curved space into a Minkowski space is exact, but the usual saddle-shaped embedding ino
a Euclidean space is only valid over a limited range. The six isometries corresponding to
translations and rotations are generated by the Lorentz matrices in the group SL(4) applied
to the hyperboloid x2 + y2 + z2 −w2 = −1. For the spherical k = 1 case, these six isometries
are generated by the 4 dimensional rotation matrices in SO(4).

Because this form of the metric has a factor (which depends on position) times the
metric for Euclidean space, these mappings are conformal. In geography and in cosmology
this means that shapes of small regions are correctly portrayed. In particular, angles around
a point are correct. The conformal factor in front of the Euclidean metric shows that areas
(or volumes) are not preserved in these mappings. Also note that for any of the three cases
the map of a circle is a circle. This is a useful property of the stereographic map of a globe.

In a negatively curve k = −1 space, an equilateral triangle has angles that are less than
60◦. For one particular side length the angles are (360/7)◦, so 7 equilateral triangles can
be placed around a point. Additional equilateral triangles can be added to the outside of
the resulting regular heptagon leading to a tiling of the hyperbolic space with seven-fold
symmetry. Drawing circles around each triangle vertex with radii all equal to the side length
gives a beautiful pattern. In the positively curved k = +1 space there is a particular side
length for an equilateral triangle such that the angles are (360/5) = 72◦, and this leads
to a tiling of the sphere with five-fold symmetry, the twenty-sided regular polyhedron or
icosahedron.

The metric of the expanding space-time that has homogeneous and isotropic spatial
sections is

ds2 = c2dt2 − a(t)2 R2
◦

(

dr2

1 − kr2
+ r2

[

dθ2 + sin2 θdφ2
]

)

= c2dt2 −R(t)2

(

dr2

1 − kr2
+ r2

[

dθ2 + sin2 θdφ2
]

)

(28)
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Fig. 10.— Seven fold symmetric pattern in k = −1 hyperbolic space, projected onto a circle,
with apologies to M. C. Escher. Left: the triangulation of the space with equilateral triangles
having angles of (360/7)◦ in black, with circles drawn around each group of 7 triangles in
red. Right: filling the circles with UCLA’s colors.

This form of the metric for an expanding homogeneous and isotropic Universe is called the
Friedmann-Robertson-Walker or FRW metric. Comoving observers have constant (r, θ, φ) so
these are called comoving coordinates. With dr = dθ = dφ = 0 for comoving observers, the
proper time is just dt so the variable t is the proper time since the Big Bang for comoving
observers – the cosmic time. When dealing with light cones it is often convenient to use the
conformal time, defined by dη = cdt/a(t). With this variable the FRW metric becomes

ds2 = a(t)2
[

dη2 − R2
◦
(

dψ2 + S(ψ)2
[

dθ2 + sin2 θdφ2
])]

(29)

where S(x) = sinh x, x or sin x for k = −1, 0 or +1. Because this looks like a factor times a
Minkowski metric, at least for the variables η and R◦ψ, this is a “conformal” version of the
FRW metric.

With the metric we can rederive the relationship between the scale factor a(t) and the
redshift z. The equation for a light ray is ds = 0, and with the observer at the origin we
have dθ = dφ = 0, so

cdt = a(t)R◦dr/
√

1 − kr2 (30)

or
∫ t◦

te

cdt

a
= R◦

∫ rs

0

dr√
1 − kr2

(31)

For a source fixed in comoving coordinates, rs is fixed, so the RHS doesn’t depend on time.
A light pulse emitted at a slightly later time, te + dte will be received at a time t◦ + dt◦,
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where
∫ t◦

te

cdt

a
=

∫ t◦+dt◦

te+dte

cdt

a
(32)

which gives dt◦/a(t◦) = dte/a(te). The observed wavelength is proportional to dt◦, while the
emitted wavelength is proportional to dte, giving

1 + z =
λobs

λem
=
dt◦
dte

=
a(t◦)

a(te)
(33)
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r

Fig. 11.— Left: Two objects moving on the same straight line with a polar coordinate grid
superimposed. Right: the paths of these objects in r vs. θ. The “acceleration” d2r/dθ2 is
necessarily the same for both objects, just like the gravitational acceleration is identical for
all objects passing through a given event in a given direction.

4. Simplified General Relativity

In Newtonian gravity the acceleration is given by −GM/r2 where r is the distance
between the attracting mass and the particle being accelerated. The distance between two
moving objects is their spatial separation at a common time t. But in special relativity there
is no universal time t, so the distance r can not specified and Newtonian gravity does not
work.

Einstein needed to come up with a new way to describe gravity, and since there was
already a metric in special relativity, ηµν , and since electromagnetism was described by a set
of fields, it was obvious to try to describe gravity by turning the metric into a field gµν which
varies as a function of space-time. If the paths of bodies moving only under the influence
of gravity are taken to be geodesic paths, then any object moving from event A to event
B will follow the same path (as long as A and B are close together). Following the same
path means that the gravitational acceleration is the same for all objects, which is the weak
equivalence principle that is well established by “Eötvös” experiments.

Classical objects follow geodesic paths because the proper time is maximized for geodesic
paths. An object with mass m has energy mc2 and thus an oscillation frequency ω = mc2/~.
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Fig. 12.— Several world lines following different parabolas in a space-time with a metric
gradient. The world lines are decorated with equally space clock ticks. The world line
with the longest proper time (in green) between two events has an acceleration equal to the
acceleration of gravity.
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Thus the contribution of a path to the Feynmann path integral is ∝ exp[−i(mc2/~)
∫

dτ ].
Unless δ

∫

dτ is very small, the phase factor will average to zero. For a 1 gram test particle,
mc2/~ = 1048 sec−1, so only the geodesic path for which δ

∫

dτ vanishes gives a significant
contribution to the path integral.

The “Einstein elevator” thought experiment shows that in a vertical gravitational field
the metric coefficient g00 has to depend on the height z. When the elevator is accelerating
upward with acceleration g, a photon emitted at the bottom that takes h/c seconds to reach
the top will see the ceiling receeding at velocity gh/c leading to a gravitational redshift
of dν/ν = gh/c2 This is equivalent to having clocks run faster by a factor 1 + φ/c2 when
in a gravitational potential φ, or slower if in a negative gravitational potential well. Thus
g00 ≈ (1 + 2φ/c2)η00 but η = diag(1,−1,−1,−1) and the effects of gravity on the other
components is not fixed by the gravitational redshift. For the simple case of a ball thrown
into the air, and landing after 1 second, the ranges of the coordinates are ∆ct = 3 × 108

m, dx = dy = 0, and dz = 1.25 m for one gravity. Since ∆x0 is so much bigger than the
coordinate changes, only the gradient of g00 matters. We can use g33 ≈ −1 because the effect
of a gradient would be cubic in the small dz.

Taking the path of the ball to be (ct; 0, 0, z(t)) for the range 0 to T in t, we can find
the proper time as a functional of z. The boundary conditions are z = 0 at both t = 0 and
t = T . For very large acceleration, the ball goes very high, which makes its clock run faster,
but it also moves at high speed which makes its clock run slower. Thus

cτ =

∫ T

0

√

(1 + 2φ′z(t)/c2) − (vz(t)/c)2cdt

≈
∫ T

0

(1 + φ′z(t)/c2 − 0.5(vz(t)/c)
2)cdt (34)

where φ′ is short for ∂φ/∂z. Rather than doing the general Euler-Lagrange solution to max-
imizing this functional, I will try parabolas parameterized by their downward acceleration
a. Then z(t) = aT 2/8 − a(t− T/2)2/2) and the z-velocity is vz(t) = a(T/2 − t). Now

cτ = cT (1 + φ′(2/3)zmax/c
2 − (1/6)(vmax/c)

2) (35)

where the average value of z is 〈z〉 = (2/3)zmax, and the average value of v2 is 〈v2〉 =
(1/3)v2

max. Clearly zmax = aT 2/8 and v2
max = a2T 4/4. Thus we need

∂[φ′aT 2/12c2]

∂a
=
∂[a2T 2/24c2]

∂a
(36)

to have a geodesic which gives a = φ′.

Now consider a light beam going horizontally in the Einstein elevator. If a = φ′ we get
a deflection dθ = φ′dt/c which we know is one-half the correct value. What do we have to
add to get the right deflection?
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For the light ray traveling in x across the elevator, the coordinate change dx is no longer
small. In fact it is dx = cdt, just as big as the change in the time axis. Thus we now need to
worry about the gradient of gxx with respect to z. To get the deflection to double we need
to have ∂gxx/∂z = ∂g00/∂z. We write gxx = −1 + 2ψ/c2 introducing a new gravitational
potential ψ. Then we get for velocity vx = βc in the x-direction

cτ =

∫ T

0

√

(1 − β2) + 2(φ′ + β2ψ′)z(t)/c2 − [vz(t)/c]2cdt

≈
∫ T

0

√

1 − β2

(

1 +
(φ′ + β2ψ′)z(t) − 0.5vz(t)

2

c2(1 − β2)

)

cdt (37)

Setting the derivative of τ with respect to a to zero now gives

a = φ′ + β2ψ′ (38)

So if ψ = φ, then the acceleration is (1 + β2) times the Newtonian acceleration. For light
this factor doubles the deflection, giving the observed deflection of starlight during a Solar
eclipse.

Note that for a conformal metric, gµν = (1 + 2φ/c2)ηµν , then ψ = −φ. This was the
solution proposed by Gunnar Nordström in 1913. But in this model, light is obviously not
deflected by gravity at all. In 1913, Einstein wrote to the director of the Mt. Wilson Obser-
vatory suggesting that a search for the deflection of light by the Sun should be measured, and
gave a prediction of 0.87′′ based on the Einstein elevator argument. World War I intervened,
and Einstein worked out all of General Relativity, so by the time the measurement was done
in 1919 his prediction had doubled and was confirmed by the eclipse data.

The metric can always be written as

gαβ = ηαβ + hαβ,

where η is the special relativistic metric taken here to be

η = diag(1,−1,−1,−1).

In general there is no reason to assume that h is small, but if it is one can simplify the
equations of General Relativity. Note that one can always choose coordinates such that

gαβ = ηαβ and ∂gαβ/∂xγ = 0

at a single event. These are the local inertial coordinates. Thus linearized GR always applies
in a small region around an event using local inertial coordinates.

The Newtonian approximation gives hαβ = 2φ
c2

diag(1, 1, 1, 1) where φ is the Newtonian
gravitational potential. Define the scalar quantity h = hα

α = ηαβhαβ . Then the trace reversed

metric perturbation is defined as

hαβ = hαβ − 0.5ηαβh
γ
γ .
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It satisfies the simple wave equation

(

− ∂2

∂(ct)2
+ ∇2

)

hαβ =
16πG

c4
Tαβ

where Tαβ is the stress energy tensor given by

Tαβ = diag(ρc2, P, P, P )

in the rest frame of an isotropic fluid. For ρ and P constant, the solution is

hαβ =
16πG

6c4
(x2 + y2 + z2)diag(ρc2, P, P, P )

Then hαβ = hαβ − 0.5ηαβh with h
α

α = h.

h = (16πG/6c4)(x2 + y2 + z2)(ρc2 − 3P )

hαβ =
8πG

6c4
(x2 + y2 + z2)diag(ρc2 + 3P, ρc2 − P, ρc2 − P, ρc2 − P )

For P 6= 0 this metric no longer has the Newtonian form with ψ = φ but a typical speed in
the fluid is v =

√

P/ρ which is a large fraction c if P ≈ ρc2, so we should not expect to see
the Newtonian form.

For slow moving objects like a test particle outside a spherical region, only the h00 term
is needed to determine the acceleration, so we can write

φ =
2πG

3
(ρ+ 3P/c2)r2

so

~g = −4πG

3
(ρ+ 3P/c2)rr̂

When P = −ρc2 we have ~g = (8πG/3)ρrr̂ giving accelerating motion with solutions r =
exp(Ht) where H =

√

8πGρ/3. This is the behaviour of a dark energy dominated Universe.
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5. Dynamics: a(t)

We can now find the differential equation that governs the time evolution of the scale
factor a(t). Knowing this will tell us a lot about our Universe. In this section we take a
strictly Newtonian point of view, so all velocities we consider will be small compared to c.
This mean that the pressure satisfies P << ρc2 and is thus insignificant when compared to
the rest mass density. The way to find a(t) is to consider a sphere of radius R◦ now. A
comoving test particle on the surface of this sphere will have a velocity of v = H◦R◦. The
acceleration of the test particle due to the gravity of the material inside the sphere is

−dv
dt

= g =
GM

R2
=

4π

3
GρR (39)

which is the same as the g due to a point mass at the center of the sphere with the same mass
as the total mass of the sphere. The gravitational effect of the concentric spherical shells
with radii greater than R◦ is zero. Note that even a large pressure would not contribute
to the acceleration since only pressure gradients cause forces, but we shall see later that
in General Relativity, pressure has weight and must be included in the gravitational source
term. We have a differential equation for the radius of the sphere R(t) but in order to solve
it we need to know how ρ varies with R.

The matter in this problem is all part of the Hubble flow, so the matter inside the sphere
with r < R stays inside the sphere since its radial velocity is less than the velocity of the
surface of the sphere. The material outside the sphere has larger velocities than the surface
of the sphere so it stays outside. This simplifies the problem to the problem of radial orbits
in the gravitational field of a point mass.

The velocity at any distance can easily be found from the energy equation:

v2

2
= Etot +

GM

R
(40)

If the total energy Etot is positive, the Universe will expand forever. But if the Etot is
negative, the Universe will stop expanding at some maximum size, and then recollapse. We
can find the total energy by plugging in the velocity v◦ = H◦R◦ and the density ρ◦ in the
Universe now. This gives

Etot =
(H◦R◦)

2

2
− 4πGρ◦R

2
◦

3
=

(H◦R◦)
2

2

(

1 − ρ◦
ρcrit

)

(41)

with the critical density at time t◦ being ρcrit = 3H2
◦/(8πG). Thus if ρ > ρcrit the Universe

will recollapse, but if ρ ≤ ρcrit the Universe will expand forever. We define the ratio of
density to critical density as Ω = ρ/ρcrit. Thus Ω > 1 means a recollapse, while Ω ≤ 1 gives
perpetual expansion. since Ω is not a constant, we use a subscript “naught” do denote its
current value, just as we do for the Hubble constant.
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The value of the critical density is both large and small. In CGS units,

ρcrit =
3H2

◦
8πG

= 1.879h2 × 10−29 gm/cc = 10, 539h2 eV/c2/cc (42)

which is 11.2h2 protons/m3. While this is certainly a small density, it appears to be much
larger than the density of observed galaxies. Blanton et al. (2003, ApJ, 592, 819) gives a
local luminosity density of (1.6 ± 0.2)h× 108 L⊙/Mpc3 in the V band. The critical density
is 2.8h2 × 1011 M⊙/Mpc3 so

Ωlum =
(M/L)/(M⊙/L⊙)

1750h
(43)

The mass-to-light ratio near the Sun is (M/L)/(M⊙/L⊙) = 3.3 so Ωlum ≈ 0.003. Thus the
density of luminous matter seems to be much less than the critical density.

At the critical density we have the simple equation

(

dR

dt

)2

=
2GM

R
(44)

with the solution R ∝ t2/3 so the normalized scale factor is a(t) = (t/t◦)
2/3. On the other

hand, if the density is zero, then v = const so a = (t/t◦).

So for Ωr◦ = Ωv◦ = 0 and Ωm◦ = Ω◦ we can rewrite the energy equation Eq(40):

v2 = H2R2 = H2
◦R

2
◦(1 − Ω◦) +

8πGρ◦R
3
◦

3R
(45)

which if we divide through by R2H2
◦ gives

H2

H2
◦

=
R2

◦
R2

(1 − Ω◦) +
R3

◦
R3

Ω◦ (46)

But remember that R◦/R = a(t◦)/a(t) = (1 + z) so this becomes

H2

H2
◦

= (1 + z)2(1 − Ω◦) + (1 + z)3Ω◦ = (1 + z)2(1 + Ω◦z) (47)

One thing we can compute from this equation is the age of the Universe given H◦ and Ω◦.
H is given by H = d ln a/dt = −d ln(1 + z)/dt so

dt

dz
= − 1

(1 + z)H
= − 1

H◦(1 + z)2
√

1 + Ω◦z
(48)

The age of the Universe t◦ is obtained by integrating this from z = ∞ to z = 0 giving

H◦t◦ =

∫ ∞

0

dz

(1 + z)2
√

1 + Ω◦z
if Ω◦ = Ωm◦ & Ωr◦ = Ωv◦ = 0. (49)
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Fig. 13.— Scale factor vs. time for 5 different models: from top to bottom having
(Ωm◦,Ωv◦) = (0, 1) in blue, (0.25,0.75) in magenta, (0,0) in green, (1,0) in black and (2,0) in
red. All have H◦ = 65.

If the current density is negligible compared to the critical density, then the Universe is
almost empty, and Ω◦ ≈ 0. In this limit H◦t◦ = 1. If the Universe has the critical density,
Ω◦ = 1 and H◦t◦ = 2/3. The current best observed values for the product H◦t◦ are 2-3 σ
higher than the Ω = 1 model’s prediction.

A second thing we can compute is the time variation of Ω. From Eqn(40) we have

2Etot = v2 − 2GM

R
= H2R2 − 8πGρR2

3
= const (50)

If we divide this equation by 8πGρR2/3 we get

3H2

8πGρ
− 1 =

const′

ρR2
= Ω−1 − 1 (51)

Let’s calculate what value of Ω at z = 104 is needed to give Ω◦ = 0.1 to 2 now. The density
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scales like (1 + z)3 while the radius R scales like (1 + z)−1 so const′ = (−0.5 . . . 9)ρ◦R
2
◦ and

Ω = 0.9991 to 1.00005 at z = 104. This is a first clue that there must be an extraordinarily
effective mechanism for setting the initial value of Ω to a value very close to unity. Unity
and zero are the only fixed points for Ω, but unity is an unstable fixed point. Thus the fact
that Ω◦ is close to unity either means that a), it’s just a coincidence, or b), there is some
reason for Ω to be 1 exactly.

The fact that the dynamics of a(t) are the same as the dynamics of of a particle moving
radially in the gravitational field of a point mass means that we can use Kepler’s equation
from orbit calculations:

M = E − e sinE (52)

where M is the mean anomaly which is just proportional to the time, e is the eccentricity,
and E is the eccentric anomaly. The x and y coordinates are given by

x = aSM(e− cosE)

y = aSM

√
1 − e2 sinE (53)

with semi-major axis aSM . Since we want radial motion with y = 0, clearly we need e = 1.
Thus we get a parametric equation for a(t):

t = A(E − sinE)

a = B(1 − cosE) (54)

Clearly these equations apply to a closed Universe since a reaches a maximum of 2B at
E = π and then recollapses. To set the constants A and B, we need to use

ȧ =
da/dE

dt/dE
=

(

B

A

)

sinE

1 − cosE

ä =

(

B

A2

)

cosE(1 − cosE) − sin2E

(1 − cosE)3
= −

(

B

A2

)

1

(1 − cosE)2

q =
−äa
ȧ2

=
1 − cosE

sin2E
=

1

1 + cosE
(55)

Thus E◦ = cos−1(q−1
◦ − 1), B = (2 − q−1

◦ )−1, and A = t◦/(E◦ − sinE◦). Note that

H◦t◦ =
ȧ

a
t◦ =

(E◦ − sinE◦) sinE◦

(1 − cosE◦)2
(56)

For example, with q◦ = 1 or Ω = 2, we get E◦ = π/2. Then H◦t◦ = π/2 − 1 = 0.5708. The
ratio of the time at the Big Crunch (E = 2π) to the current time is then

tBC

t◦
=

2π

π/2 − 1
= 11.008 (57)

for Ω◦ = 2.
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For an open Universe we change the parametric equation to

t = A(sinhE −E)

a = B(coshE − 1) (58)

We get E◦ from q◦ using

q◦ =
1

1 + coshE◦
(59)

This gives

H◦t◦ =
ȧ

a
t◦ =

sinhE◦ (sinhE◦ − E◦)

(coshE◦ − 1)2

=
(E◦ + (1/6)E3

◦ + . . .)((1/6)E3
◦ + (1/120)E5

◦ + . . .)

((1/2)E2
◦ + (1/24)E4

◦ + . . .)2

=
(1/6)E4

◦ + (13/360)E6
◦ + . . .

(1/4)E4
◦ + (1/24)E6

◦ + . . .
=

2

3

(

1 +
1

20
E2

◦ − . . .

)

(60)

For example, if q◦ = 0.1, then coshE◦ = 9, sinhE◦ = 8.994, E◦ = 2.887 and H◦t◦ = 0.846.

For both the open and closed Universe cases, the variable E is proportional to the
conformal time which is usually denoted by η. Conformal time follows the equation dt =
a(t)dη and we easily see that dt = (A/B)a(t)dE. For the closed Universe case the metric in
terms of E and ψ is

ds2 = a(E)2

[

c2
(

A

B

)2

dE2 −R2
◦dψ

2

]

(61)

but

R◦ =
c

H◦
√

|1 − Ω◦|
= c

(

A

B

)

1 − cosE◦

sinE◦

√

1 + cosE◦

1 − cosE◦
= c

(

A

B

)

(62)

so the metric is
ds2 = R2

◦a(E)2
[

dE2 − dψ2
]

(63)

In a conformal space-time diagram, which plots ψ as the spatial coordinate and E as the
time coordinate, worldlines of light rays always have slopes of ±1. Since the range of E is 0
to 2π from the Big Bang to the Big Crunch, and since the range of ψ is 0 to 2π for one trip
around the closed Universe, we see that it takes light the entire time from Big Bang to Big
Crunch to circumnavigate the Universe.

5.1. with Pressure

General relativity says that pressure has weight, because it is a form of energy density,
and E = mc2. Thus

R̈ = −4πG

3

(

ρ+
3P

c2

)

R (64)
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This basically replaces the density by the trace of the stress-energy tensor, but we will use
this GR result without proof. This equation actually leads to a very simple form for the
energy equation. Consider

Ṙ2

2
=
GM

R
+ Etot (65)

If we take the time derivative of this, and remember that if the pressure is not zero the work
done during expansion causes the mass to change, we get

ṘR̈ = −GM
R2

Ṙ +
G

R

dM

dR
Ṙ (66)

Now the work done by the expansion is dW = PdV = P (4πR2)dR and this causes the
enclosed mass to go down by dM = −dW/c2, so

ṘR̈ = −4πGρ

3
RṘ− 4πGPRṘ/c2

= −4πG

3

(

ρ+
3P

c2

)

Ṙ (67)

which agrees with the acceleration equation from GR. Thus the GR “pressure has weight”
correction leaves the energy equation the same, so the critical density is unchanged, and the
relation (Ω−1 − 1)ρa2 = const is also unchanged.

The two characteristic cases where pressure is significant are for radiation density and
vacuum energy density. A gas of randomly directed photons (or any relativistic particles)
has a pressure given by

P =
ρc2

3
(68)

This has the effect of doubling the effective gravitational force. But the pressure also changes
the way that density varies with redshift. The pressure does work against the expansion of
the Universe, and this loss of energy reduces the density. We have W = PdV = PV 3dR/R.
This must be subtracted from the total energy ρc2V giving d(ρc2V ) = −ρc2V dR/R. Finally
we find that ρ ∝ R−4 ∝ (1 + z)4 for radiation. Putting this into the force equation Eq(64)
gives

R̈ = −8πG

3

ρ◦R
4
◦

R3
(69)

which becomes an energy equation

v2 = 2Etot +
8πG

3

ρ◦R
4
◦

R2
(70)

Note that the “2” from doubling the effective density through the “weight” of the pressure
was just the factor needed to integrate 1/R3, and the resulting critical density for a radiation
dominated case is still ρcrit = 3H2/(8πG). When the density is critical, Etot = 0, and the
solution has the form R ∝ t1/2.
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For vacuum energy density the pressure is P = −ρc2. Naively one thinks that the vac-
uum has zero density but in principle it can have a density induced by quantum fluctuations
creating and annihilating virtual particle pairs. With P = −ρc2, the stress-energy tensor is
a multiple of the metric, and is thus Lorentz invariant. Certainly we expect that the stress-
energy tensor of the vacuum has to be Lorentz invariant, or else it would define a preferred
frame. Of course we expect the stress-energy tensor of the vacuum to be zero, and the zero
tensor is Lorentz invariant, but so is the metric.

Explicitly the stress energy tensor for a fluid in its rest frame is

Tµν =









ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P









(71)

After a Lorentz boost in the x-direction at velocity v = βc we get

T ′
µν =









γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

















ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

















γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1









=









γ2ρc2 + γ2β2P γ2β(ρc2 + P ) 0 0
γ2β(ρc2 + P ) γ2β2ρc2 + γ2P 0 0

0 0 P 0
0 0 0 P









(72)

While it is definitely funny to have ρvac 6= 0, it would be even funnier if the stress-energy
tensor of the vacuum was different in different inertial frames. So we require that T ′

µν = Tµν .
The tx component gives an equation

γ2β(ρc2 + P ) = 0 (73)

which requires that P = −ρc2. The tt and xx components are also invariant because γ2(1−
β2) = 1.

Because the pressure is negative, the work done on the expansion is negative, and
the overall energy content of the vacuum grows as the Universe expands. In fact, W =
PdV = −ρc2V (3dR/R) which changes the energy content by d(ρc2V ) = 3ρc2V dR/R so
ρ = const during the expansion. This is reasonable, because if the density is due to quantum
fluctuations, they shouldn’t care about what the Universe is doing. The pressure term in
the force equation makes the force -2 times what it would have been, giving

R̈ =
8πGρ

3
R (74)

The solutions of this equation are

a ∝ exp

(

±t
√

8πGρ

3

)

(75)
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After a few e-foldings only the positive exponent contributes and

H =

√

8πGρ

3
(76)

We see once again that the critical density is

ρcrit =
3H2

8πG
. (77)

For this vacuum-dominated situation, Ω = 1 is a stable fixed point, and this exponential
growth phase offers a mechanism to set Ω = 1 to great precision.

5.2. General case

It is quite easy to find a(t) with a combination of the different kinds of matter. The
potential energies all add linearly, so

v2 = 2Etot +
8πGR2

3

(

ρv◦ + ρm◦
R3

◦
R3

+ ρr◦
R4

◦
R4

)

(78)

where ρm◦ is the density of ordinary zero-pressure matter at t◦, etc. Dividing by R2 gives

H2 = H2
◦
(

[1 − Ωv◦ − Ωm◦ − Ωr◦] (1 + z)2 + Ωv◦ + Ωm◦(1 + z)3 + Ωr◦(1 + z)4
)

(79)

Using H−1 = (1 + z)dt/dz gives

H◦(1 + z)
dt

dz
=
(

[1 − Ωv◦ − Ωm◦ − Ωr◦] (1 + z)2 + Ωv◦ + Ωm◦(1 + z)3 + Ωr◦(1 + z)4
)−1/2

(80)
while using H = ȧ/a gives

ȧ = H◦
(

[1 − Ωv◦ − Ωm◦ − Ωr◦] + Ωv◦a
2 + Ωm◦/a+ Ωr◦/a

2
)1/2

(81)

For flat, vacuum dominated models with Ωv◦ + Ωm◦ = 1, Ωr◦ = 0, the H◦t◦ product is

H◦t◦ =

∫ ∞

0

dz

(1 + z)
√

1 + Ωm◦(3z + 3z2 + z3)
(82)

which is larger than 1 for Ωm◦ < 0.27. This means that the concensus model naturally
explains the high observed value of H◦t◦ ≈ 1.

It is quite common to see the combination [1 − Ωv◦ − Ωm◦ − Ωr◦] defined as Ωk◦, or the
Ω due to curvature. Then one has

H(z) = H◦
(

Ωk◦(1 + z)2 + Ωv◦ + Ωm◦(1 + z)3 + Ωr◦(1 + z)4
)1/2

(83)
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or
ȧ = H◦

(

Ωk◦ + Ωv◦a
2 + Ωm◦/a+ Ωr◦/a

2
)1/2

(84)

While I have written Ωm◦ above, since Ω is not a constant function of time, the usual practice
is to just write Ωm where it is understood that the Ω’s are defined at t◦.

Note that the redshift actually depends on three parameters: the distance of the object,
the observation time, and the time of emission. These three parameters are constrained by
the requirement that light travel at speed c, but that still leaves two free parameters. The
formulae for dt/dz given above assume that the time of observation is fixed, and that the
distance to the source varies as a function of the emission time to satisfy the light speed
constraint. We can also ask a very different question: for a source with fixed comoving
distance, how does the redshift vary with observation time? In this case the emission time
varies as a function of the observation time to satisfy the light speed constraint. In principle
this is a way to directly measure the deceleration parameter of the Universe (Loeb, 1998
astro-ph/9802122).

In order to calculate the rate at which observed redshifts for comoving objects will
change, we need to carry Eqn(32) to the next higher order, and in this order we need to use
a(te + ∆te) = a(te)(1 +H(te)∆te + . . .) and a(to + ∆to) = a(to)(1 +H(to)∆to + . . .). But we
also know that ∆te = ∆to/(1 + z). Combining gives

(1 + z)(to + ∆to) =
a(to + ∆to)

a(te + ∆te)

=
a(to)(1 +H(to)∆to + . . .

a(te)(1 +H(te)∆to/(1 + z) + . . .

=
a(to)

a(te)
(1 + [H◦ −H(z)/(1 + z)]∆to + . . .)

= (1 + z)(to) + [(1 + z)H◦ −H(z)]∆to (85)

Thus the rate of change of the redshift of a comoving object is

d(1 + z)

dto
= (1 + z)H◦ −H(te) (86)

= H◦(1 + z)

(

1 −
√

[1 − Ωtot,◦] + Ωv◦/(1 + z)2 + Ωm◦(1 + z) + Ωr◦(1 + z)2

)

For example, consider a source with z = 3 in a Universe with Ωm◦ = 1. We get dz/dto =
H◦(1 + z)(1 −

√
1 + z) = −4H◦. This is negative because this model is decelerating, so

redshifts decrease with time. Unfortunately, the velocity change associated with this redshift
change is only dv/dt = c(dz/dt)/(1 + z) = −2 cm/sec/yr for H◦ = 65, so it will be very
difficult to measure.

For small redshifts this formula simplifies to

d(1 + z)

dto
= H◦(Ωv◦ − 0.5Ωm◦ − Ωr◦)z = −q◦H◦z (87)
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where q◦ is the deceleration parameter.

6. Flatness-Oldness

Even in the general case with radiation, matter and vacuum densities, the energy equa-
tion is still

2Etot = v2 − 8πGρR2

3
= H2R2 − 8πGρR2

3
= const (88)

Thus we still get

Ω−1 − 1 =
const′

ρa2
(89)

Currently Ωr◦ ≈ 10−4 but for z > 104 the radiation will dominate the density.

In order to correctly calculate the density during the radiation dominated epoch at
z > 104 we need to consider the entropy density, s. This is given by

s = V −1

∫

dQ

T
=

∫

d(aT 4)

T
=

4

3
aT 3 (90)

for a blackbody radiation field of photons. But there are also neutrinos of 3 types, each with
associated anti-neutrinos. For fermions the energy density in thermal equilibrium is

u = gs

∫

E(p)

exp(E(p)/kT ) + 1

4πp2dp

h3
(91)

where gs is the number of spin degrees of freedom. For neutrinos with spin 1/2, one would
expect gs = 2 but since only one helicity of neutrinos seems to exist we set gs = 1. For
massless particles E = pc and we get

u = 4πgs

(

kT

hc

)3

kT

∫

x3dx

ex + 1
=

7gs

16
aT 4 (92)

Thus the entropy density of massless fermions is given by

s =

∫

du

T
=

4

3

7gs

16
aT 3 (93)

Since we have a total gs of 6 for neutrinos and anti-neutrinos one might expect an additional
contribution from neutrinos that is 42/16 times the photon entropy but the actual number
is smaller because the photons were “heated” by the annihilation of the e± pairs as the
temperature of the Universe fell below an MeV but the neutrinos were already decoupled
were not heated. Since no heat is transferred into or out of piece of the Universe because
of homogeneity, the entropy of photons plus e± plasma at temperature Tν(1 + z) is entirely
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transferred to a photon gas at temperature Tγ(1 + z). The spin factor for electrons is gs = 2
and it is also 2 for positrons. This gives an equation

4

3

(

a + 4a
7

16

)

Tν(1 + z)3 =
4

3
aTγ(1 + z)3 (94)

or
Tν(1 + z)

Tγ(1 + z)
=

(

4

11

)1/3

(95)

or Tν,◦ = 1.95 K. Because of this factor, the additional contribution of neutrinos to the
current energy density is (42/16)(4/11)4/3 = 0.68. Thus the current energy density is given
by u = (g∗/2)aT 4

◦ with the “effective statistical weight” g∗ = 3.36. But the current entropy
density is given by

s◦ =
4

3
aT 3

◦ + 3
4

3

7

8
aT 3

ν◦ =
4

3

g∗S
2
aT 3

◦ = 2890kB erg/K/cc (96)

where the “effective statistical weight” for entropy is g∗S = 43/11 = 3.91 at the current time.
Now we want to calculate the redshift and density at the earliest time we can reasonably
consider, the Planck time given by

tP l =
~

mP lc2
=

~
1/2G1/2

c5/2
= 5.4 × 10−44 sec (97)

At this time the Hubble constant is H = 1/(2t) for a radiation-dominated critical density
Universe, so

ρ =
3H2

8πG
=

3c5

32πG2~
= 1.54 × 1092 gm/cc (98)

We can calculate the temperature using

ρ =
ag

2c2
T 4 (99)

where g is the sum of all the gs’s for bosons plus 7/8 of the sum of the gs’s for fermions.
Only particles with rest masses less than kT/c2 are included in g. In the Standard Model g
rises to 106.75 (Kolb & Turner, “The Early Universe”, Figure 3.5) at high T . To find the
redshift we use

s =
4

3

g

2
aT 3 = (1 + z)3s◦ = (1 + z)3 4

3

g∗S
2
aT 3

◦ (100)

Thus

(1+z) =
( g

3.91

)1/3
(

2ρc2

agT 4
◦

)1/4

= 2.67×1031×
( g

106.75

)1/12
(

ρ

1.54 × 1092 gm/cc

)1/4

(101)

Note that the net dependence on the relatively uncertain g factor is only g1/12. The quantity
ρR2 = ρ/(1 + z)2 needed to find Ω−1 − 1 is given by

ρ

(1 + z)2
=

(

3.91

g

)2/3(
agT 4

◦ ρ

2c2

)1/2

=
√

ρ× 3 × 10−34 gm/cc

(

106.75

g

)1/6

(102)
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For the density at the Planck time this is 2.16 × 1029 gm/cc if g = 106.75. But the current
value of ρR2 is just ρ◦ = Ω◦ρcrit = 1.8788 Ω◦h

2 × 10−29 gm/cc. Finally we get that at the
Planck time

Ω−1 − 1 = 8.7 × 10−59Ω◦h
2(g/106.75)1/6

(

Ω−1
◦ − 1

)

(103)

Thus to get Ω◦ between 0.95 and 1.05 with h = 0.71 and g = 106.75 requires

0.999999999999999999999999999999999999999999999999999999999998

< Ω <

1.000000000000000000000000000000000000000000000000000000000002 (104)

which is really stretching the bounds of coincidence. This is known as the flatness-oldness

problem in cosmology. “Flatness” is used because the critical density Universe has flat spatial
sections, while “oldness” is used because if the Universe had Ω = 1.1 at a time 10−43 seconds
after the Big Bang, it would recollapse in 10−42 seconds. Thus in order to have a Universe
as old as ours with Ω◦ close to 1 requires Ω very very close to 1 at early times.

6.1. The Flatness-Oldness Figure

The calculations involved in the flatness-oldness figure are as follows:

ȧ = H◦
√

Ωm/a+ Ωva2 + Ωr/a2 + Ωk

= (100 km s−1 Mpc−1)
√

ωm/a+ ωva2 + ωr/a2 + ωk (105)

with ωm = Ωmh
2 etc. This differential equation is integrated to give the a(t) curves. For

all three cases shown in Figure 14 the density vs a relations are the same. But the curves
correspond to different initial conditions giving different total energies, and ωk is proportional
to the total energy. With different total energies the different models have expanded to
different sizes leading to different densities at 1 nanosecond after the Big Bang.

Now the general evolution of Ω is (1/Ω − 1)ρa2 =const. Since

ρ = (3(100 km s−1 Mpc−1)2/8πG)(ωm/a
3 + ωr/a

4 + ωv) (106)

and
ρcrit = (3(100 km s−1 Mpc−1)2/8πG)(ωm/a

3 + ωr/a
4 + ωv + ωk/a

2) (107)

this just corresponds to a constant ωk. For Ω very close to 1 this becomes ∆ρa2 =const. But
it is not quite correct to say that 1/Ω − 1 = ∆ρ/ρ. For a radiation-dominated model one
might have a simple case with ȧ =

√

1/a2 + ǫ where ǫ = 1/Ω − 1 when a = 1, if one omits
factors of 3/(8πG). Then H at a = 1 is

√
1 + ǫ so ρcrit = 1+ ǫ but ρ = 1. Then 1/Ω = 1+ ǫ.

But the time to reach a = 1 is given by

t =

∫ 1

0

da/
√

1/a2 + ǫ ≈ (1/2) − (1/8)ǫ+ . . . (108)
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Fig. 14.— Scale factor vs. time for Universes with ωm = Ωmh
2 = 0.27 × 0.712, ωv =

0.73 × 0.712, and different values for ωk = Ωkh
2 = 0.5, 0 & -0.5. With ωk = 0 this is

the WMAP concordance ΛCDM model. Densities at 1 nanosecond after the Big Bang are
indicated.

But we need to let the expansion continue beyond a = 1 to reach t = 0.5 for comparison to
the unperturbed case. We need to go to a = 1 + da with da = (1/8)ǫ since ȧ ≈ 1 at a = 1.
Since the density goes like a−4 this means that ∆ρ/ρ = −0.5ǫ. Thus the density contrast is
given by

∆ρ

ρ
= − ǫ

2
= −1

2

ωk

ωm/a+ ωr/a2 + ωva2
(109)

We already know that at 1 ns the density is ρ = 3/(32πGt2) = 4.474 × 1023 gm/cc, so
Eqn 101 gives 1 + z = 1.96 × 1014 if g = 106.75. The current density corresponding to
ωk = 0.5 is 9.4 × 10−30 gm/cc. At 1 ns this “curvature density” is (1 + z)2 times higher. So
ǫ = 9.4×10−30× (1.96×1014)2/4.474×1023 = 8.07×10−25. The density contrast is one-half
this so ∆ρ = 0.5 × 9.4 × 10−30 × (1.96 × 1014)2 = 0.18 gm/cc. Since ∆ρ ∝ (1 + z)2 ∝ 1/t,
I could redo the figure with a 1 gm/cc density difference at 181 ps after the Big Bang, but
then the density would be 1.37 × 1025 gm/cc and would not start out with “sextillion”.

Note that all the digits after 447. . . are certainly not significant, since we do not know
big G to that precision.
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7. Distant Objects

In general to find the appearance of distant objects (flux and angular size) we need to
use a metric calculated using GR, but for the simple case of Ω = 0, the Universe is empty
and there are no gravitational forces, so special relativity can be used. In special relativity
the metric is

ds2 = c2dt2 − (dx2 + dy2 + dz2) = c2dt2 − r2(dδ2 + cos2 δdα2) (110)

The worldlines of comoving galaxies all have to intersect at some event which we identify
as the Big Bang. Let’s choose the is event as the zero point for our coordinates. Without
gravity all the comoving galaxies move on straight lines so for any particular galaxy B we
have

xB(t) = a(t)XB

yB(t) = a(t)YB

zB(t) = a(t)ZB (111)

with a(t) = t/t◦. However, the special relativistic time variable t can not be used as the
cosmic time variable, because objects at the same t have different proper times since the Big
Bang for comoving observers. The events that do have the same proper time τ since the Big
Bang for comoving observers lie on a hyperbola defined by τ 2 = t2 − r2/c2.

Thus a constant τ hyperbola has to be flattened into a plane. This immediately gives
expansion velocities greater than c in distant regions of the Universe. This reinforces the
point made earlier that the Hubble law velocities v = HD can be larger than the speed
of light. The scale factor becomes a(τ) = τ/t◦. Thus the Hubble constant is given by
H◦ = a−1da/dt = t−1

◦ which agrees with our earlier calculation.

7.1. Angular size distance

Now let us consider an observation we make of an object at special relativistic coordi-
nates x = dA and t = t◦ − dA/c. This object is clearly on our past light cone, since us-now
is the event at x = 0 and t = t◦. If the object has a dimension R perpendicular to the line-
of-sight, then we know that it will subtend an angle ∆θ = R/dA because the SR coordinates
describe a simple geometry. This distance defined by dA = R/∆θ is known as the angular

size distance. The redshift of the object at x = dA can be found several different ways, but
cz = H◦dA is not one of them. The first way uses the rule that 1+z = a(τem)−1. The cosmic
time τ =

√

(t◦ − dA/c)2 − d2
A/c

2 so

1 + z =
t◦

√

(t◦ − dA/c)2 − d2
A/c

2
=

1
√

1 − 2dA/ct◦
(112)
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Solving this equation gives

dA = ct◦
z(1 + z/2)

(1 + z)2
(113)

The second way to find z at dA is to look at the SR velocity v = dA/(t◦ − dA/c) and
compute the SR Doppler shift

1 + z =

√

1 + v/c

1 − v/c
=

√

ct◦
ct◦ − 2dA

(114)

which clearly gives the same result.

7.2. Luminosity distance

The flux from an object subtending an angle ∆θ can be found using the fact that the
number of photons per mode is not changed during the expansion of the Universe. For a
blackbody the number of photons per mode is (exp(hν/kT ) − 1)−1. For the an object at
redshift z, the photons emitted at νem arrive with frequency νobs = νem/(1 + z). Since the
number of photons per mode stays the same, a blackbody emitting at a temperature Tem

will appear to be a blackbody of temperature Tobs/(1 + z). Thus an object with luminosity
L = 4πR2σSBT

4
em has a flux F = (∆θ)2σSBT

4
obs. The luminosity distance dL is defined by

F =
L

4πd2
L

(115)

so

dL =

√

L

4πF
=

√

(

R

∆θ

)2(
Tem

Tobs

)4

= dA(1 + z)2 (116)

7.3. Radial Distance

The actual distance that should go into the Hubble Law can be measured by comoving
observers using radar pulses sent just before and received just after the cosmic time τ . In
order to compute this distance, let’s use the hyperbolic sine and cosine since the slice of
constant proper time since the Big Bang is a hyperbola in special relativistic coordinates.
So let

t = τ coshψ

x = cτ sinhψ (117)

where ψ is the hyperbolic “angle”. The distance at constant τ between ψ and ψ + dψ
is given by −ds2 = dx2 − c2dt2 with dx = cτ coshψdψ and dt = τ sinhψdψ so −ds2 =
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Fig. 15.— Space-time diagram plotted in special relativistic coordinates showing the constant
cosmic time τ hyperbolae, and the radar pulses used to measure the radial distance from A
to E is R = 4 big squares, while the circumference of the circle with center A that contains E
is C = 2π times 4.7 big squares which is greater than 2πR. Thus this model has hyperbolic
geometry.

(cτ)2(cosh2 ψ− sinh2 ψ)dψ2. Hence the distance is cτdψ and the total radial distance is cτψ.
But the circumference of a circle is given by 2πx = 2πcτ sinhφ. Since sinhψ > ψ, the spatial
sections of the zero density Universe are negatively curved.

7.4. Robertson-Walker metric

We can write the entire metric in cosmological variables now:

ds2 = c2dτ 2 − (cτ)2
(

dψ2 + sinh2 ψ(dδ2 + cos2 δdα2)
)

(118)
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This is often rewritten using r = sinhψ as the radial variable. Since dr = coshψdψ and
coshφ =

√
1 + r2, this gives

ds2 = c2dτ 2 − (cτ)2

(

dr2

1 + r2
+ r2(dδ2 + cos2 δdα2)

)

(119)

This is a Robertson-Walker metric with negative curvature. It describes one of the three
3D spaces which are isotropic and homogeneous. The other 2 are Euclidean space and the
hypersperical 3D surface of a 4D ball. Usually t is used for the cosmic time variable instead
of τ .

A general form for the metric of an isotropic and homogeneous cosmology is

ds2 = c2dt2 − a(t)2R2
◦

(

dr2

1 − kr2
+ r2(dδ2 + cos2 δdα2)

)

(120)

where k = −1, 0 or 1 for the negatively curved (hyperboloidal), flat or positively curved
(hyperspherical) cases, a(t) will be computed later using energy arguments, and finally the
radius of curvature R◦ of the Universe is given by

R◦ =
c/H◦

√

|1 − Ωv◦ − Ωm◦ − Ωr◦|
(121)

where Ωv◦ is the current ratio of the vacuum density (cosmological constant) to the critical
density 3H2/8πG, Ωm◦ is the current ratio of the density of pressureless matter to the critical
density, and Ωr◦ is the current ratio of radiation density (ρ = u/c2) to the critical density.
If 1−Ωv◦ −Ωm◦ −Ωr◦ > 0 then k = −1, while if 1−Ωv◦ −Ωm◦ −Ωr◦ < 0 then k = +1. We
take this General Relativity result without proof.

But it is interesting to compare the equation for the radius of curvature with Poisson’s
equation: ∇2φ = 4πGρ. Now φ has dimensions of c2, and ∇2 is a second spatial derivative,
so this is dimensionally like [c2/R2] = [4πGρ]. If we rearrange R◦ = (c/H◦)/

√

|1 − Ωtot| we
get

c2

R2
= H2

◦ |1 − Ωtot| = (8πG/3)|ρcrit − ρtot|. (122)

This differs from our dimensional analysis by a factor of 2/3 where the 2 comes from the
fact that the metric coefficient is g00 ≈ 1 + 2φ/c2 and the 3 comes from the number of
spatial dimensions. We can think of this as an energy density associated with curvature,
ρkc

2 = [3c4/(8πG)]/R2 where the stiffness coefficient has the dimensions of a force, so force
divided by R2 is a pressure or energy density. This coefficient is very large like many Planck
units: [3c4/(8πG)] = 1.45 × 1048 dynes, or the weight of 7 × 1011 Suns in 1g.

Often the combination a(t)R◦ is changed to a(t). This puts the dimensions of distance
onto a(t). In this class, I will stay with a dimensionless a and a(t◦) = 1.

It is possible for a closed Universe with k = +1 to expand forever if the cosmological
constant Ωv◦ is large enough. The usual association of closed Universes with recollapse works
when the vacuum energy density is zero.
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8. General formula for angular sizes

We have worked out the angular size distance versus redshift for the empty Ω = 0
Universe. We have also worked the general FRW metric which we can use to find the
general answer for angular size versus redshift. The angular size distance is obviously given
by

√
−ds2/dδ2 with dt, dα, dr = 0. This must be evaluated at the emission time tem, so

DA = a(tem)R◦r. But we have to find r by solving a differential equation to follow the past
light cone:

a(t)R◦dr√
1 − kr2

= −cdt (123)

so

R◦

∫

dr√
1 − kr2

=

∫ t◦

tem

(1 + z)cdt (124)

This can be viewed as follows: light always travels at c, so the distance covered in dt is
cdt. But this distance expands by a factor (1 + z) between time t and now, and since the
comoving distance is measured now, this (1 + z) factor is needed. The integral on the LHS
of Eqn(124) is either sin−1 r, r, or sinh−1 r depending on whether k = +1, 0 or −1.

8.1. Critical Density Universe

For Ωm◦ = 1, Ωv◦ = Ωr◦ = 0, the integral of

∫ t◦

tem

(1 + z)cdt =
c

H◦

∫

(1 + z)−3/2dz = 2
c

H◦

(

1 − (1 + z)−1/2
)

(125)

Also, the R◦’s cancel out and k = 0. Thus the angular size distance for this model is

DA = 2
c

H◦

(

(1 + z)−1 − (1 + z)−3/2
)

(126)

Therefore the luminosity distance for the Ω = 1 model is

DL = 2
c

H◦

(

1 + z −
√

1 + z
)

=
cz

H◦

(

1 +
z

4
+ . . .

)

(127)

8.2. Steady State Universe

Another easy special case is the Steady State Universe which is a critical density vacuum-
dominated model. Since H is a constant, a(t) = exp(H(t− t◦)). Then

∫ t◦

tem

(1 + z)cdt =

∫ t◦

tem

exp(H(t◦ − t))cdt =
cz

H
(128)
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The Steady State model has k = 0 since if k = ±1, then R◦ is measurable, but the radius of
curvature grows with the expansion of the Universe, and hence one doesn’t have a Steady
State. Thus k = 0 and R◦ cancels out. This gives

DA =
c

H

z

1 + z
(129)

and the luminosity distance is

DL =
c

H
z(1 + z) (130)

As a final special case consider the Ωr◦ = 1, Ωm◦ = Ωv◦ = 0 critical density radiation
dominated Universe. Since Ω = 1, R◦ → ∞ but it cancels out in determining DA. Since
a(t) ∝ t1/2, (1 + z) ∝ t−1/2 and

c
dt

dz
= − c

H◦

1

(1 + z)3
(131)

Thus
∫

(1 + z)cdt =
c

H◦

(

1 − 1

1 + z

)

(132)

and

DA = a(tem)

∫

(1 + z)cdt =
c

H◦

z

(1 + z)2
. (133)

Finally DL = cz/H◦ exactly.

For the more general case we note that sin r and sinh r differ from r only in the cubic
term. However, the integral on the RHS of Eqn(124) depends on a(t) and differs from a linear
approximation cz/H◦R◦ in the second order. The second order deviation of the angular size
distance away from the linear approximation DA = cz/H◦ thus depends only on the time
history of the scale factor a(t). We can write

a(t◦ + ∆t) = a(t◦)

(

1 +H◦∆t−
1

2
q◦(H◦∆t)

2 + . . .

)

(134)

which defines the deceleration parameter

q◦ = −aä
ȧ2

(135)

The force equation ä = −(4πG/3)(ρ+ 3P/c2)a from our previous analysis gives us

q◦ = −aä
ȧ2

=
4πG

3H2
◦

(

ρ+
3P

c2

)

=
Ωm◦

2
+ Ωr◦ − Ωv◦ (136)

Thus the Ω = 0 empty Universe has q◦ = 0, the critical density Universe has q◦ = 0.5, and
the Steady State model has q◦ = −1.
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Given the expansion for a(t) we find

d

(

a(t)

a(t◦)

)

= d

(

1

1 + z

)

=
−dz

(1 + z)2
= H◦(1 − q◦(H◦∆t) + . . .)dt (137)

Since H◦∆t = −z + O(z2) we get

dt

dz
=

−H−1
◦

(1 + z)2(1 + q◦z + . . .)
(138)

The integral on the RHS of Eqn(124) is then given by

∫ t◦

tem

(1 + z)cdt =
c

H◦

∫ z

0

dz

(1 + z)(1 + q◦z)
=

cz

H◦

(

1 +
z

2
[−1 − q◦] + . . .

)

(139)

Eqn(124) then gives

DA = R◦(r + O(r3))/(1 + z) =
cz

H◦

(

1 +
z

2
[−3 − q◦] + . . .

)

(140)

Finally

DL = DA(1 + z)2 =
cz

H◦

(

1 +
z

2
[1 − q◦] + . . .

)

(141)

This is consistent with our four special cases:
DL = (cz/H◦)(1 + z) for q◦ = −1,
DL = (cz/H◦)(1 + z/2) for q◦ = 0,
DL = (cz/H◦)(1 + z/4 + . . .) for q◦ = 0.5, and
DL = (cz/H◦) for q◦ = 1.

In 1998 work on distant Type Ia SNe by Perlmutter et al. (1998) and Garnavich et

al. (1998) suggested that q◦ < 0, which favors an empty Universe or one dominated by a
cosmological constant. This has been amply confirmed with the current best SNe dataset
being the joint likelihood analysis (JLA) published by Betoule et al. (2014).

Finally, a useful formula found by Mattig (1958, AN, 284, 109) for matter-dominated
models with Ωr◦ = Ωv◦ = 0 is

DL =
cz

H◦

[

4 − 2Ω + 2z

(1 +
√

1 + Ωz)(1 − Ω +
√

1 + Ωz)

]

(142)

Note that for Ω = 2, q◦ = 1, we have

DL =
cz

H◦
(143)

exactly. This particular case simplifies because for Ω = 2, the radius of curvature of the
Universe is R◦ = c/H◦.
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8.3. K correction, Evolution

The formula F = L/(4πD2
L) applies to bolometric or total fluxes and luminosities. When

converting it to band fluxes such as V magnitudes or Fν , we need to do two things. The
first is to properly transform the frequency, so we compute the flux Fν from the luminosity
Lν(1+z). The second is to properly transform the bandwidth of the observation into the
bandwidth of the emission. This is trivial if we use the flux per ∆ ln ν and luminosity per
∆ ln ν, since the fractional bandwidth (or number of octaves) doesn’t change with redshift.
Thus

νFν =
ν(1 + z)Lν(1+z)

4πD2
L

(144)

Thus the flux vs. redshift law for the flux per octave is the same as the one for bolometric
flux. From this we easily get

Fν =
(1 + z)Lν(1+z)

4πD2
L

Fλ =
Lλ/(1+z)

4πD2
L(1 + z)

(145)

The difference between ν(1 + z)Lν(1+z) and νLν leads to a correction known as the
K-correction. Expressed as magnitudes to be added to the apparent magnitude, the K-
correction is

K(ν, z) = −2.5 log

(

ν(1 + z)Lν(1+z)

νLν

)

(146)

If working with only V band data, we can write

V = MV + 5 log

(

DL(z)

10 pc

)

+K(νV , z) (147)

Obviously observations or models are needed to predict how the luminosity depends on
frequency away from the V band.

When all observations were made in the photographic blue, the K-corrections could be
quite large for galaxies since the flux drops precipitously at the 400 nm edge due to the H and
K lines of ionized calcium plus the Balmer edge in hydrogen. But with modern multiband
data, we can usually use the R or I band to observe galaxies with z ≈ 0.5, and compare these
fluxes to B or V band data on nearby galaxies. This reduces the magnitude and uncertainty
in the K-correction.

A more serious difficulty is the possibility of evolution. A galaxy at z = 0.5 is approx-
imately 5 Gyr younger than the nearby galaxies we use for calibration. If new stars are
not being formed, the brighter more massive stars will reach the end of their main sequence
life, become red giants and then fade away. As a result, galaxies get fainter as they get
older, and this leads to a correction to the flux-redshift law that has a large uncertainty.
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Evolution introduces a correction that is proportional to z just like the q◦ term in DL. This
has prevented the use of galaxies to determine q◦, and increases the utility of the distant
Type Ia SNe work. Type Ia SNe are thought to be due to white dwarfs in binaries slowly
accreting material until they pass the Chandrasekhar limit and explode. Since the Chan-
drasekhar limit doesn’t evolve with time, the properties of Type Ia SNe should not depend
on z. However, the peak brightness of a Type Ia SNe is not a constant, but depends on the
decay rate after the peak. Faster decaying Type Ia SNe are fainter, while slower decaying
Type Ia SNe are brighter. The cause of this correlation is not fully understood, and it thus
might depend on redshift. The typical mass of a white dwarf does evolve with time, and was
higher in the past, so there is still the possibility of a systematic error in the Type Ia SNe
work.

9. General formula for Dltt, Dnow, DA and DL

The following formulae are used in my cosmology calculator on the World Wide Web.
The metric is given by

ds2 = c2dt2 − a(t)2R2
◦(dψ

2 + S2(ψ)[dθ2 + sin2 θdφ2]) (148)

where S(x) is sinh(x) if Ωtot < 1 and sin(x) for Ωtot > 1. R◦ = (c/H◦)/
√

|1 − Ωtot|. The
past light cone is given by cdt = a(t)R◦dψ so

Dnow = R◦ψ =

∫

cdt

a
=

∫ 1

1/(1+z)

cda

aȧ
(149)

and of course the light travel time distance is given by

Dltt =

∫

cdt =

∫ 1

1/(1+z)

cda

ȧ
(150)

We can write ȧ as H◦
√
X with

X(a) = Ωm◦/a+ Ωr◦/a
2 + Ωv◦a

2 + (1 − Ωtot) (151)

Let us define

Z =

∫ 1

1/(1+z)

da

a
√
X

(152)

so Dnow = (cZ/H◦) and Dltt = (c/H◦)
∫ 1

1/(1+z)
da/

√
X. Then

DA =
c

H◦

S(
√

|1 − Ωtot|Z)

(1 + z)
√

|1 − Ωtot|

=
Dnow

(1 + z)

(

1 +
1

6
(1 − Ωtot)Z

2 +
1

120
(1 − Ωtot)

2Z4 + . . .

)

(153)
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We can define a function J(x) given by

J(x) =











sin
√
−x√

−x
, x < 0;

sinh
√

x√
x
, x > 0;

1 + x/6 + x2/120 + . . .+ xn/(2n+ 1)! + . . . , x ≈ 0.

(154)

Then

DA =
cZ(z)

H◦

J([1 − Ωtot]Z
2)

1 + z

DL = (1 + z)2DA (155)

9.1. Fitting Supernova Data

Several groups are collecting Type Ia supernova data. The light curve decay rate for
SN Ia can be used to determine their luminosity at peak. Phillips (1993, ApJL, 413, L105)
used fits of the form Mpk = A + Bdm/dt where dm/dt is the decay rate, and the time t is
in the SN’s rest frame. Fast decaying supernovae are fainter, so B > 0. The coefficient A is
determined using an assumed value of the Hubble constant. After this calibration one has

DM = mpk −Mpk = 5 log(c/H◦) + 5 log[f(z; Ωm,Ωv)] (156)

Figure 16 shows the distance modulus DM vs. redshift z for a large sample of 740 SNe Ia
in the combined catalog reported by Betoule et al. (2014).

The function f(z) is given by f(z) = (1 + z)Z(z)J([1 − Ωtot]Z
2). Since the A param-

eter was found using an assumed Hubble constant which may be incorrect, there are three
parameters that need to be found: a constant offset in DM plus Ωm and Ωv. Thus one
computes the weighted mean 〈e〉 of the quantity

ei = mpk,i − (A+Bdmi/dt) − 5 log(c/H◦) − 5 log[f(zi; Ωm,Ωv)] (157)

where i runs through the set of supernovae. The uncertainty in A and the adjustment to H◦
only effect this mean. Then one evaluates

χ2(Ωm,Ωv) =
∑

i

(

ei − 〈e〉
σi

)2

(158)

in order to assess the quality of the fit as a function of Ωm,Ωv. Figure 17 shows contours of
∆χ2 for these fits to the Betoule et al. data.

Since there are a large number of supernovae a plot showing all of the data points is
not very informative, because the y-axis range is so large and the datapoints with errorbars
make a large mass of black ink. So it is easier to see the effect and the differences between
models in a plot like Fig 18 which uses binned normal points and subtracts a fiducial model
from the DM values.
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Fig. 16.— Distance modulus vs. redshift for high redshift Type Ia supernovae. The data
are taken from the joint likelihood analysis (JLA) published by Betoule et al. (2014, A&A,
568, 22 [arXiv:1401.4064]). The distance modulus is DM = 5 log(DL(z)/D◦), normalized to
D◦ = 10 pc for this plot. The model curves are blue for Ωv◦ = 1, Ωm◦ = 0; magenta for
Ωv◦ = 0.7185, Ωm◦ = 0.2815; green for Ωv◦ = 0, Ωm◦ = 0; black for Ωv◦ = 0, Ωm◦ = 1;
and red for Ωv◦ = 0, Ωm◦ = 2. The large range on the y axis and the mass of points plus
errorbars makes it difficult to see the goodness of fits for these models.
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Fig. 17.— Contours of ∆χ2 for fits to the JLA catalog of supernovae (Betoule et al.,
arxiv:1401.4064). The minimum χ2 is shown by the green dot. The contours show
χ2 = χ2

min +1, 4 & 9. The purple dot shows the WMAP9 model Ωm◦ = 0.2815,Ωv◦ = 0.7185
(Hinshaw et al., arxiv:1212.5226).
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Ia supernovae. Data have been binned into normal points and only the difference between
the distance modulus and an empty Universe are shown. The flat dark energy model is the
WMAP model. The differences between models are clear on this plot.
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10. Number Counts

One kind of cosmological observation is the number versus flux law, N(S). We can
compute the expected N(S) law for various cosmological models using the distances dA and
dL. The physical volume of the shell between redshift z and z + dz is given by the surface
area of the sphere which is 4πdA(z)2 times the thickness of the shell which is (cdt/dz)dz.
Thus if we have conserved objects, so their number density varies like n(z) = n◦(1 + z)3,
then the number we expect to see in the redshift range is

dN

dz
= n◦(1 + z)3dA(z)2 cdt

dz
(159)

where N is the number of sources with redshift less than z per steradian.

However, we generally don’t have a complete survey of all the objects closer than a given
redshift. It is much more common to have a survey complete to a given flux or magnitude.
Let S be the flux and L be the luminosity of the objects. We will consider a single class
of objects, all with the same luminosity. The case with a range of luminosities is easily
constructed from a superposition of several standard candle cases. With these assumptions,
the luminosity distance is

dL =

√

L

4πS
(160)

and the counts versus flux are given by

dN

dS
= n◦(1 + z)3 d2

L

(1 + z)4

d(dL)

dS

dz

d(dL)

cdt

dz
(161)

Now d(dL)/dS = −0.5S−3/2
√

L/4π and d2
L = L/(4πS) so

dN

dS
=
n◦(L/4π)3/2

2S5/2

[

(1 + z)−1 dz

d(dL)

cdt

dz

]

(162)

The first factor on the RHS is the “Euclidean” dN/dS which one would get for uniformly
distributed sources in a non-expanding Euclidean Universe. The term in brackets contains
the corrections due to cosmology.

The total intensity from all sources is given by

J =

∫

SdN =

∫

S
n◦(L/4π)3/2

2S5/2

[

(1 + z)−1 dz

d(dL)

cdt

dz

]

dS (163)

Without the cosmological correction term this is
∫

S−3/2dS which diverges as S → 0. This
divergence is another statement of Olber’s paradox.

If we use the expansions to second order in z

dt

dz
=

−H−1
◦

(1 + z)2(1 + q◦z + . . .)
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dL =
cz

H◦

(

1 +
z

2
[1 − q◦] + . . .

)

d(dL)

dz
=

c

H◦
(1 + z [1 − q◦] + . . .) (164)

we get
dN

dS
=
n◦(L/4π)3/2

2S5/2

[

1

(1 + z)3(1 + q◦z + . . .)(1 + z [1 − q◦] + . . .)

]

(165)

The q◦ dependence cancels out in the first two terms so

dN

dS
=
n◦(L/4π)3/2

2S5/2

[

1 + O(z2)

(1 + z)4

]

(166)

We see that the correction term decreases the source counts below the Euclidean expectation.
This flattening of dN/dS avoids the divergence implied by Olber’s paradox. The redshift
where the count reduction is substantial is rather small since the correction term is ≈ (1 +
z)−4, so by z = 0.25 the correction is already a factor of 0.4.
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We can easily work out the exact form of the relativistic correction for a few simple
cases. For the empty Universe we get

dL =
cz

H◦
(1 + z/2)

d(dL)

dz
=

c

H◦
(1 + z)

cdt

dz
=

c

H◦

1

(1 + z)2

dN

dS
=

n◦(L/4π)3/2

2S5/2

[

1

(1 + z)4

]

(167)

For large z we have dL ∝ z2 in this case so S ∝ z−4. Hence dN/dS ∝ S−3/2 as S → 0. This
flattening is enough to make the total intensity finite, solving Olber’s paradox, but the total
number of observable sources is infinite.

We can express the redshift in terms of the flux by defining ζ =
√

S1/S where S1 =
L/(4π(c/H◦)

2) is the flux the source would have in a Euclidean Universe with distance d =
c/H◦. Think of ζ (“zeta”) as a Euclidean distance in redshift units. Solving ζ = z(1 + z/2)
gives z = −1 +

√
1 + 2ζ so for Ω = 0 the N(S) law is

dN

dS
=
n◦(L/4π)3/2

2S5/2

[

1

(1 + 2ζ)2

]

=
n◦(L/4π)3/2

2S5/2







1
(

1 + 2
√

S1/S
)2






(168)

For an Ω = 2 matter dominated Universe we get

dL =
cz

H◦
d(dL)

dz
=

c

H◦
cdt

dz
=

c

H◦

1

(1 + z)2
√

1 + 2z

dN

dS
=

n◦(L/4π)3/2

2S5/2

[

1

(1 + z)3
√

1 + 2z

]

(169)

For large z we have S ∝ z−2 in this model, so the source counts flatten to dN/dS ∝ S−3/4.
This not only solves Olber’s paradox but also gives a finite total number of observable
sources. For any Ω > 0 we have dL ∝ z for large z, so this finite total source count applies
to all models with Ω > 0, even though the models with Ω < 1 are open models with infinite
volumes. The total source count gives the number of sources in the observable Universe, and
this is less than the total Universe unless Ω = 0. For this model z = ζ so

dN

dS
=
n◦(L/4π)3/2

2S5/2
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1 +
√
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)3√
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√
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For a critical density matter-dominated Universe we get

dL =
2c

H◦

(

1 + z −
√

1 + z
)

d(dL)

dz
=

c

H◦

(

2 − 1√
1 + z

)

cdt

dz
=

c

H◦

1

(1 + z)2.5

dN

dS
=

n◦(L/4π)3/2

2S5/2

[

1

(2
√

1 + z − 1)(1 + z)3

]

(171)

If we let u =
√

1 + z, then 2u(u− 1) = ζ so

u =
√

1 + z =
1 +

√
1 + 2ζ

2
(172)

and the source counts N(S) are given by
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For a vacuum-dominated model with q◦ = −1, the cosmological functions are

dL =
c

H◦
z(1 + z)

d(dL)

dz
=

c

H◦
(1 + 2z)

cdt

dz
=

c

H◦

1

1 + z
(174)

Thus ζ = z(1 + z), or

z =
−1 +

√
1 + 4ζ

2
(175)

The number counts will be given by

dN
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=
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Fig. 20.— The excess of faint quasars and radio sources can be explained by an evolving
population in a homogeneous Universe as shown at left above. The quasars are shown as
little magenta line segments because they have a short lifetime compared to the age of the
Universe. There are now only a few quasars, so we see only a few bright quasars. But when
we look far away we are also looking into the past, and see many more quasars. In the
Steady State model on at right above, this evolution with time is not allowed, so there is no
explanation for the excess of faint quasars and radio sources.

Since q◦ has canceled out in the leading terms, the source count test is an insensitive
method to find the geometry of the Universe. Even so, source counts were used to rule
out the Steady State model even before the microwave background was discovered. The
reason this was possible is that the observed source counts of radio sources and quasars
are not consistent with Eqn(166) for any value of q◦. Instead of being flatter than the
dN/dS ∝ S−5/2 Euclidean prediction, the observed source counts are steeper for medium
fluxes, and only flatten for very faint flux levels. These steeper than Euclidean source counts
can only be obtained by changing our assumptions: either the density or luminosity of the
sources was greater in the past. To fit the quasar counts with an increase of density, we
need to increase our assumed n by a factor of ≈ (1 + z)6. This increase is faster than the
(1+ z)−4 correction term due to cosmology, and matches the steep observed number counts.
Thus the total density of quasars must vary like n(z) = n◦(1+ z)3(1+ z)6 ∝ (1+ z)9 back to
redshifts of z ≈ 2.5. How does this result rule out the Steady State model? The geometry
of the Steady State model is just that of a q◦ = −1 vacuum-dominated model, and q◦ has
canceled out in dN/dS. But the Steady State model also asserts that n(z) is constant so the
(1 + z)3 term in Eqn(159) is dropped. This gives
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in the Steady-State model, and there is no freedom to adjust the source density evolution
with z. Since the apparent source density evolves like (1 + z)9 which is clearly not constant,
the Steady State model is ruled out.
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10.1. Gamma Ray Bursts

γ-ray bursts are short bursts (≈ 10 seconds) of 100-300 keV γ-rays. The total energy
fluence is 10−5 erg/cm2 for fairly bright bursts that occur about once a month. Thus the
flux from these bursts is about 10−6 erg/cm2/sec, which is the same as the bolometric flux
of a 1st magnitude star. But since the bursts occur without warning, very little is known
about their sources. I participated in a search for optical counterparts in the 1970’s using the
Prairie Network of meteor cameras. These cameras photographed the entire visible sky every
dark night to look for meteors. Multiple cameras separated by 10’s of kilometers were used
to provide stereo views of the meteor trails. Grindlay, Wright & McCrosky (1974, ApJL,
192,L113) searched these films for “dots” in the error boxes of γ-ray bursts. Stars left long
circular trails, but a “dot” would be a source that flashed on then went out quickly. If two
cameras recorded a dot in the same place, we would have a hit. Unfortunately there were
lots of dots (mainly dirt and “plate” flaws), but no coincidences. But we were able to prove
that the optical power was less than the γ-ray power.

GRB’s are isotropic on the sky, with no preference for the galactic plane or the galactic
center. Furthermore, the bright bursts follow a N(> S) ∝ S−1.5 source count law appropriate
for uniformly distributed sources. This indicates that they originate either from sources
less than one disk scale height from the Sun, or from sources further away than the Virgo
cluster of galaxies. So the distance is either < 100 pc or > 100 Mpc. When GRO was
launched, many people expected the isotropic pattern to break down for the fainter bursts
with fluences down to 10−7 erg/cm2 that the BATSE experiment can detect. Instead, the
faint burst distribution was still isotropic, but the source counts flattened for fainter bursts.
Thus the GRB distribution has an “edge”, but is spherically symmetric around the Solar
System.

One of leading models for this is that the “edge” is the edge of the observable Universe.
We have seen that the source counts will naturally break away from the Euclidean N(>
S) ∝ S−1.5 law when z ≈ 0.25. When dealing with GRB’s there is an additional factor of
1/(1+ z) in the source count correction because the rate of bursts from high redshift regions
is reduced by the time dilation factor: all rates transform like the apparent rate of oscillation
of atomic clocks, and are thus slower by a factor of 1/(1 + z). If we take z = 0.2 for a burst
with a fluence of 10−6 erg/cm2, we find a source energy release of

∆E = 4πdL(z)2 × (fluence)/(1 + z) ≈ (5/h2) × 1049 ergs (178)

The 1/(1 + z) factor is due to the stretching of the burst by the redshift, so the emitted
burst is shorter than the observed burst. This total energy is considerably larger than the
optical light emitted by a supernova. Producing this large quantity of γ-rays is the principal
difficulty with the cosmological model for GRB’s.

But data obtained using the Beppo-SAX satellite have proved that GRB’s are at cos-
mological distances. That satellite had a wide-field of view hard X-ray camera which could
locate the position of a GRB to 4′ accuracy. Ground controllers slewed the satellite to point
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a higher resolution X-ray telescope at the burst position, and often a fading X-ray transient
source is seen for several hours after the burst. The X-ray telescope provided 1′ positions.
Ground-based telescopes saw a fading optical transient at the same position, and in a few
cases a large redshift was determined for the optical transient because absorption lines due
to an intervening cloud of gas at redshift zabs were seen. The redshift of the GRB source
must be larger that zabs. GRB 970508 showed zabs = 0.825 (Metzger et al., 1998, Nature,
387, 878). GRB 990123 was observed optically within 22 seconds of the BATSE trigger, and
was seen to rise to a peak brightness of 9th magnitude, even though the redshift is zabs = 1.6
(Akerlof et al., astro-ph/9903271). The γ-ray fluence for E > 20 keV of this burst was
3×10−4 erg cm−2 (Band et al., 1999, ApJ, 413, 281, astro-ph/9903247). After a few months
the optical transient has faded away, and there is usually a faint galaxy at the former position
of the fading optical transient. These galaxies have large redshifts: for example, the host
galaxy of GRB 971214 has z = 3.42 (Kulkarni et al., 1998, Nature, 393, 35). This burst had
a γ-ray fluence of 1.1× 10−5 erg cm−2. While these data confirm the cosmological nature of
the GRB’s predicted by their number counts and isotropy, the high redshifts seen for bursts
clearly on the S−1.5 part of the N(S) curve requires a very wide distribution of intrinsic GRB
brightness. Currently the Swift satellite is providing rapid GRB positions, and in the Fermi
Gamma-ray Space Telescope can both detect and localize GRBs and measure γ-rays with
energies > 100 MeV. GRBs have been observed with redshifts up to z ≈ 6, and claimed
redshifts go up to z = 9.4 based on near-IR photometry that seems to indicate a J-band
dropout.
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11. Evolution of Diffuse Backgrounds

We can calculate the evolution of diffuse background radiation fields without knowing
the brightness of distant galaxies, because if a radiation field is homogeneous and isotropic
like the Universe, we only need to consider a small region of space. Imagine a cubical region
bounded by comoving mirrors. In a barber shop with mirrors on two opposing walls one sees
what looks like an infinite number of images receding off to infinity, and this looks just like
a homogeneous and isotropic Universe.

So let us consider the equation of radiative transfer:

dIν
ds

= jν − ανIν (179)

where Iν is the specific intensity in erg/cm2/sec/sr/Hz, s is the path length along the ray in
cm, jν is the emissivity in erg/cm3/sec/sr/Hz, and αν is the absorption coefficient in cm−1.
We define the optical depth τν =

∫

ανds and get the equation

dIν
dτν

=
jν
αν

− Iν = Sν − Iν (180)

where the source function S is the ratio of emissivity to absorption coefficient.

11.1. Olber’s Paradox

If we assume that jν is due to blackbody stars with number density n, radius R, and
temperature T∗, then the luminosity per unit frequency of a single star is Lν = 4π2R2Bν(T∗).
The emissivity is then jν = nLν/(4π) = nπR2Bν(T∗). The absorption coefficient of the stars
is just one over the mean free path, and is given by αν = nπR2. When we solve the radiative
transfer equation we get

Iν = exp(−τν)Iν(0) + [1 − exp(−τν)]Bν(T∗) (181)

Thus when s→ ∞, the intensity goes to Bν(T∗), the surface brightness of a star. Since the
sky is much darker than this, something is wrong with Olber’s assumptions.

Let’s calculate αν from the observed luminosity density of 1.6h× 108 L⊙/Mpc3:

αν = nπR2 =
1.6 × 108

(3.08 × 1024)3
π(7 × 1010)2 ≈ 10−43 cm−1 (182)

Thus to reach τ = 1 we need to go to s = 1043 cm which is 1025 light years. Since the lifetime
of the Universe is much less than this, we need to consider the effect of the expanding Universe
on the equation of radiative transfer.
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11.2. Scattering

Often the absorption coefficient includes scattering denoted by σν which generates a
contribution to jν of σνJν , where Jν is the average over solid angle of the intensity. When
averaged over solid angle, scattering cancels out for a diffuse background. This is because
scattering only changes the direction of photons, and all directions are equal in an isotropic
situation. However, when looking at individual sources, scattering is just as effective in
reducing their visibility as true absorption. Therefore we are interested in knowing the
optical depth to electron scattering between the event “us-now” and some event at redshift
z on our past lightcone. Assuming that all matter is ionized, the optical depth is obtained
by using ds = cdt and ne(z) = (1 + z)3ne(0). For a non-flat matter and vacuum dominated
Universe we have

τe = ne(0)σT
c

H◦

∫

(1 + z)3da
√

(1 − Ωm◦ − Ωv◦) + Ωm◦/a+ Ωv◦a2
(183)

The coefficient in front has the simple interpretation of being the optical depth to a distance
equal to the Hubble radius c/H◦ in a non-expanding Universe. For a typical ne(0) = 1/4
per cubic meter allowed by Big Bang Nucleosynthesis and the CMB acoustic peaks, this is
ne(0)σT (c/H◦) = 1.7 × 10−3/h. Thus this optical depth only becomes large for large z so
Ωm◦/a dominates the denominator and the optical depth is

τ ≈ 1.7 × 10−3 2z3/2

3
√

Ωm◦h2
(184)

This could be significant for z ≈ 102 but only if the gas is ionized, and since this before the
existence of quasars the gas is probably neutral until z = 103. At this point, once the ionized
fraction is even a few percent, the optical depth is quite large and no point sources can be
seen.

11.3. Cosmological Equation of Transfer

Once we have disposed of scattering, and replaced ds by cdt, we still need to allow for
the continual change in frequencies caused by the expansion of the Universe. The easiest
way to do this is to replace Iν by a quantity that does not change during the expansion.
The number of photons per mode, Iν/(2hν[ν/c]

2), evaluated at ν = ν◦(1 + z) is one such
quantity. This gives

∂

∂z

(

Iν◦(1+z)

(1 + z)3

)

=
cdt/dz

(1 + z)3

(

jν◦(1+z) − αν◦(1+z)Iν◦(1+z)

)

(185)

Consider Olber’s paradox again. Assume we have a luminosity density L = 4π
∫

jνdν
now and that the only thing that changes with redshift is the density going like (1 + z)3, so
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the comoving luminosity density is constant. Thus j(ν, z) = j(ν, z = 0)(1 + z)3. [Remember
that comoving volumes expand and contract as the Universe does.] Since α is so small we
will ignore it, giving the equation

Iν◦ =

∫

jν◦(1+z)cdt (186)

For the total or bolometric intensity we integrate over frequency giving

I =

∫

Iν◦dν◦ =

∫ ∫

jν◦(1+z)cdtdν◦ =
L
4π

∫

cdt

1 + z
(187)

Thus the bolometric intensity is reduced by factor of (1 + z)−1 and is also limited by the
finite age of the Universe. Both effects have comparable magnitude so it is pointless to argue
about which factor is more important, but people do. For L ≈ 2h × 108 L⊙/Mpc3 and
Ωm = 1, we get

I =
2 × 108 × 4 × 1033 × 3000

4π(3.086× 1024)2

∫

dz

(1 + z)3.5
= 8 × 10−6 erg/cm2/sec/sr = 8 nW/m2/sr

(188)
This is an energy density of 4πJ/c = 0.002 eV/cm3 which is 0.8% of the CMB energy density
and 5 × 10−7 of the critical density for H◦ = 65.

For another example, consider the X-ray background produced by a hot intergalac-
tic medium (IGM) with ne = ne(0)(1 + z)3. The emissivity of a hot plasma is jν =
An2

e exp(−hν/kT )/
√
T and the absorption is negligible. This gives

Iν◦(1+z)

(1 + z)3

∣

∣

∣

∣

z=0

= Ane(0)2 c

H◦

∫

(1 + z)6 exp(−hν◦(1 + z)/kT (z))/
√
Tdz

(1 + z)3(1 + z)2
√

1 + Ωm◦z
(189)

so

Iν◦ = Ane(0)2 c

H◦

∫

(1 + z) exp(−hν◦(1 + z)/kT (z))dz√
1 + Ωm◦z

(190)

Unfortunately, for any likely value of ne(0) this background is extremely small, and the
expected distortion of the spectrum of the CMB produced by scattering off the hot electrons
is not seen, so this model is incorrect.

As a final example, consider a model for dark matter consisting of heavy neutrinos that
decay into a photon and a light neutrino. Conservation of momentum gives hν = 0.5mνc

2.
The emissivity is

jν =
ρνc

2δ(ν − 0.5mνc
2/h)

8πτ
(191)

where τ is the lifetime of the neutrinos which we will assume is much larger than the age of
the Universe so only a small fraction will have decayed by now. Then

Iν◦ =
ρν◦c

2c

8πH◦τ

∫

(1 + z)3δ(ν◦(1 + z) − 0.5mνc
2/h)dz

(1 + z)3(1 + z)2
√

1 + Ωm◦

=
ρν◦c

2c

8πH◦τν◦

1

(1 + z)2
√

1 + Ωm◦z

∣

∣

∣

∣

1+z=0.5mνc2/(hν◦)

(192)
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For Ωm = 1 this gives Iν ∝ ν3/2 from ν = 0 up to the edge at ν = 0.5mνc
2/h. A reasonable

limit on the extragalactic background light in the blue band is 10−6 of the critical density
or 4πνIν/c

3 < 10−6ρcrit so

ρν

ρcrit

1

2H◦τ

(

hνB

0.5mνc2

)5/2

< 10−6 (193)

Thus the lifetime of these hypothetical decaying neutrinos has to be larger than 1015 years.
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12. Effects from Electron Scattering

For early epochs when the Universe was ionized, electron scattering is the dominant
mechanism for transferring energy between the radiation field and the matter. As long as
the electron temperature is less than about 108 K, the effect of electron scattering on the
spectrum can be calculated using the Kompaneets (1957, Sov. Phys. JETP, 4, 730) equation:

∂n

∂y
= x−2 ∂

∂x

[

x4

(

n+ n2 +
∂n

∂x

)]

(194)

where n is the number of photons per mode (n = 1/(ex − 1) for a blackbody), x = hν/kTe,
and the Kompaneets y is defined by

dy =
kTe

mec2
neσT cdt. (195)

Thus y is the electron scattering optical depth times the electron temperature in units of the
electron rest mass. Note that the electrons are assumed to follow a Maxwellian distribution,
but that the photon spectrum is completely arbitrary.

Since the Kompaneets equation is describing electron scattering, which preserves the
number of photons, one finds that the y derivative of the photon density N vanishes:

∂N

∂y
∝

∫

x2∂n

∂y
dx

=

∫

∂

∂x

[

x4

(

n+ n2 +
∂n

∂x

)]

dx

= 0 (196)

The stationary solutions of the equation ∂n/∂y = 0 are the photon distributions in thermal
equilibrium with the electrons. Since photons are conserved, the photon number density does
not have to agree with the photon number density in a blackbody at the electron temperature.
Thus a more general Bose-Einstein thermal distribution is allowed: n = 1/(exp(x+ µ)− 1).
This gives ∂n/∂y = 0 for all µ. Since the Bose-Einstein spectrum is a stationary point of
the Kompaneets equation, it is the expected form for distortions produced at epochs when

(1 + z)
∂y

∂z
= σTne,◦

kT◦
mec2

c

H
(1 + z)4 > 1 (197)

For the ΩBh
2 given by BBNS and the CMB acoustic peak heights, this redshift zy where

this inequality is crossed is well within the radiation dominated era, with a value zy =

105.0/
√

ΩBh2/0.0224.

There is a simple solution to the Kompaneets equation with non-zero ∂n/∂y which
gives the Sunyaev-Zel’dovich (1969, Ap. & Sp. Sci., 4, 301) or y spectral distortion. This
is normally defined for the case where hν << kTe << mec

2. Since the x variable is defined
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Fig. 21.— FIRAS residuals and the maximum allowed y and µ distortions: y = 1.5 × 10−5

and µ = 9 × 10−5.

as hν/kTe, these assumptions make dx very small, and thus the only term that contributes
significantly to ∂n/∂y is the ∂n/∂x term: the n and n2 terms are unimportant in this limit.
For a blackbody n = 1/(ex − 1) we get

∂n

∂y
= x−2 ∂

∂x
x4∂n

∂x

= −x−2 ∂

∂x

x4ex

(ex − 1)2

= x−2 2x4e2x − (ex − 1)(4x3ex + x4ex)

(ex − 1)3

=
x2e2x − 4xe2x + 4xex + x2ex

(ex − 1)3

= ex x
2(ex + 1) − 4x(ex − 1)

(ex − 1)3
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=
xex

(ex − 1)2

(

x
ex + 1

ex − 1
− 4

)

(198)

Thus the change in intensity due to y is (to first order)

∂Iν
∂y

=
2hν3

c2
xex

(ex − 1)2

(

x
ex + 1

ex − 1
− 4

)

with x = hν/kT◦ (199)

The derivative of the Planck function with respect to T is given by

T
∂Bν(T )

∂T
=

2hν3

c2
xex

(ex − 1)2
(200)

so ∂Iν

∂y
can be described as a changed Planck brightness temperature:

Tν = T◦

[

1 + y

(

x
ex + 1

ex − 1
− 4

)

+ . . .

]

. (201)

These formulae all assume the initial spectrum is a blackbody, and that y << 1, but there
are many figures in the literature that are inaccurate because they used these first-order
formulae for y ≈ 0.1 and the higher order terms are already quite important. Figure 4 in
Sunyaev & Zel’dovich (1980, ARAA, 18, 537) and Figure 1 in Carlstrom, Holder & Reese
(2002, ARAA, 40, 643) are examples of these inaccurate figures. Fortunately the simplified
Kompaneets equation with the n + n2 terms dropped is just a diffusion equation whose
solution for any input at any y is given by a convolution of the input spectrum in photons per
logarithmic frequency interval (photons/octave) with a Gaussian in ∆ ln ν. Photons/octave
is proportional to Iν , so one gets

Iν(y) =
1√
4πy

∫

Iesν(0) exp(−(s + 3y)2/4y)ds (202)

Note that the central value for s is negative in the integral above, meaning that the output
spectrum is typically taken from the input spectrum at a lower frequency. So the output
spectrum is a broadened version of the input spectrum, shifted to higher frequencies.

But when the initial photon field is a blackbody with a temperature Tγ which is only
slightly below the electron temperature we get a distortion of the same shape. Letting
f = Te/Tγ, we find that the initial photon field is given by n = 1/(exp(fx) − 1). Therefore

(

n+ n2 +
∂n

∂x

)

=
1

exp(fx) − 1
+

1

(exp(fx) − 1)2
− f exp(fx)

(exp(fx) − 1)2
=

(exp(fx) − 1 + 1 − f exp(fx)

(exp(fx) − 1)2
=

(1 − f) exp(fx)

(exp(fx) − 1)2

= (1 − f−1)
∂n

∂x
. (203)

Thus the distortion has a Sunyaev-Zel’dovich shape but is reduced in magnitude by a factor
(1 − Tγ/Te).
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Defining the “distorting” y as

dyD =
k(Te − Tγ)

mec2
neσT cdt (204)

we find that the final spectrum is given by a frequency-dependent temperature given by

Tν = T◦

[

1 + yD

(

x
ex + 1

ex − 1
− 4

)

+ . . .

]

. (205)

where x = hν/kT◦. The FIRAS spectrum in Figure 21 shows that |yD| < 1.5 × 10−5.

The energy density transferred from the hotter electrons to the cooler photons in the y
distortion is easily computed. The energy density is given by U ∝

∫

x3ndx so

∂U

∂yD
=

∫

x
∂

∂x

(

x4∂n

∂x

)

dx (206)

which when integrated by parts twice gives

∂U

∂yD
= −

∫
(

x4∂n

∂x

)

dx

= 4

∫

x3ndx = 4U. (207)

Thus the limit on yD gives a corresponding limit on energy transfer: ∆U/U < 6×10−5. Any
energy which is transferred into the electrons at redshifts z > 7 where the Compton cooling
time is less than the Hubble time will be transferred into the photon field and produce a y
distortion. Since there are 109 times more photons than any other particles except for the
neutrinos, the specific heat of the photon gas is overwhelmingly dominant, and the electrons
rapidly cool (in a Compton cooling time) back into equilibrium with the photons. The
energy gained by the photons is ∆U = 4yaT 4

γ which must be equal to the energy lost by the
electrons and ions: 1.5(ne + ni)k∆Te. Since y = σTne(kTe/mec

2)c∆t we find the Compton
cooling time

tC =
1.5(1 + ni/ne)mec

2

4σT cUrad

=
7.4 × 1019 sec

(1 + z)4
(208)

for an ion to electron ratio of 14/15. This becomes equal to the Hubble time, (3.08568 ×
1017sec)/(h(1 + z)1.5) for Ωm = 1, at (1 + z) = 9h0.4.

At redshifts z > zy = 105, there will be enough electron scattering to force the photons
into a thermal distribution with a µ distortion instead of a y distortion. However, the normal
form for writing a µ distortion does not preserve the photon number density. Thus we should
combine the µ distortion with a temperature change to give an effect that preserves photon
number. The photon number density change with µ is given by

N ∝
∫

x2dx

exp(x+ µ) − 1
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=

∞
∑

k=1

e−kµ

∫

x2e−kxdx

= 2
∞
∑

k=1

e−kµ

k3

= 2 (ζ(3)− µζ(2) + . . .) . (209)

A similar calculation for the energy density shows that

U ∝ 6 (ζ(4) − µζ(3) + . . .) . (210)

In order to maintain N = const, the temperature of the photon field changes by an amount
∆T/T = µζ(2)/(3ζ(3)). Therefore, the energy density change at constant N is

∆U

U
=

(

4ζ(2)

3ζ(3)
− ζ(3)

ζ(4)

)

µ = 0.714µ. (211)

Thus the FIRAS limit |µ| < 9×10−5 implies ∆U/U < 6×10−5. The “improved” form of the
µ distortion, with a ∆T added to keep N constant, can be given as a frequency dependent
brightness temperature:

Tν = T◦

(

1 + µ

[

ζ(2)

3ζ(3)
− x−1

]

+ . . .

)

. (212)

In this form it is clear that a µ distortion has a deficit of low energy photons and a surplus of
high energy photons with respect to a blackbody. In this it is like the y distortion, but the
crossover frequency is lower. The “improved” form of the µ distortion is plotted in Figure
21.

Finally, at high enough redshift the process of double photon Compton scattering be-
comes fast enough to produce the extra photons needed to convert a distorted spectrum into
a blackbody. Whenever a photon with frequency ν scatters off an electron, there is an im-
pulse ∝ hν/c transferred to the electron. This corresponds to an acceleration a ∝ hν2/(mec)
for a time interval ∆t ∝ 1/ν. The energy radiated in new photons is thus ∝ e2h2ν3/(m2

ec
5)

which is ∝ αhν(hν/(mec
2))2. Since the rate of scatterings per photon is ∝ ΩBh

2(1+ z)3, the
overall rate of new photon creation is ∝ ΩBh

2(1 + z)5 while the Hubble time is ∝ (1 + z)−2.
Thus the photon creation rate per Hubble time is ∝ (1 + z)3 and at earlier enough times a
blackbody spectrum is produced no matter how much energy is transferred to the photon
field. The emissivity for double photon Compton scattering has approximately the same
spectral shape as free-free emission, since both are due to impulsive accelerations. Thus the
addition of photons to the radiation field can be described by

∂n

∂y
= A

1 − e−x

x3

(

1

ex − 1
− n

)

(213)

where A is the ratio of photon creation via double photon Compton scattering or free-free
emission to the increase of y. For double photon Compton scattering A scales like (1 + z).
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Fig. 22.— The radiation energy density U divided by U◦(1 + z)4. The large jump at
log z ≈ 8.3 is when the e+e− pair plasma annihilated. Any further input dU occurring after
zth = 106.3 is limited to be < 6 × 10−5 instead of the 0.2 shown in the Figure.

Because the photons are created primarily at low frequencies, n(x) approaches a blackbody
for x→ 0, while the frequency shifts due to Compton scattering are simultaneously transfer-
ring photons to larger values of x. A is very small at redshifts where distortions can survive,
so the photon creation occurs primarily at x≪ 1. For any n = (exp(x+ µ(x)) − 1)−1,

(

n+ n2 +
∂n

∂x

)

= −n(n + 1)
∂µ

∂x
(214)

so when µ(x) = µ◦ exp(−x◦/x) and x, x◦, µ and A are all ≪ 1, implying n ≈ n+ 1 ≈ x−1,

x−2 ∂

∂x

(

x4

(

n+ n2 +
∂n

∂x

))

≈ −µ◦ exp(−x◦/x)x2
◦

x4
(215)

This cancels the ∂n/∂y due to photon addition, which is

∂n

∂y
= A

1 − e−x

x3

(

1

ex − 1
− n

)

≈ Aµ◦ exp(−x◦/x)
x4

(216)

giving a quasi-equilibrium solution, if x◦ =
√
A. With this form for n one finds a net photon

addition rate of

∂N

∂y
=

∫

x2∂n

∂y
dx
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=

∫

x2A
1 − e−x

x3

(

1

ex − 1
− n

)

dx

= Aµ/x◦ = µ
√
A. (217)

Since the deficit of photons associated with µ is µπ2/3, one finds a thermalization rate per
unit y of

∂ lnµ

∂y
=

3
√
A

π2
∝

√
1 + z (218)

Since (1 + z)∂y/∂z ∝ ΩBh
2(1 + z)2, the overall rate for eliminating a µ distortion scales like

ΩBh
2(1 + z)5/2 per Hubble time. A proper consideration (Burigana et al. 1991, ApJ, 379,

1-5) of this interaction of the photon creation process with the Kompaneets equation shows
that the redshift from which 1/e of an initial distortion can survive is

zth =
4.24 × 105

[ΩBh2]0.4 (219)

which is zth = 1.9 × 106 for ΩBh
2 = 0.0224.
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13. Big Bang Nucleosynthesis

The formation of the light elements (H, D, He and Li) is one of the three confirmed
predictions of the hot Big Bang model in cosmology. This model was originally proposed as
an explanation for the formation of all the elements by Gamow, Herman and Alpher. But the
absence of any stable nuclei with atomic mass number A = 5 makes it impossible to proceed
past Li in the brief time and relatively low baryon density available during the Big Bang.
The nucleus He5 is unbound by 0.957 MeV relative to He4 +n, while Li5 is unbound by 1.967
Mev relative to He4 + p. Be8 is unbound by 94 keV relative to He4+He4. Li8 beta decays
in 0.8 seconds, and B8 decays in 0.8 seconds by electron capture, which does not happen at
the high temperatures during the first few minutes. But the route to carbon and heavier
elements via B8 is ineffective due to the low densities and high Coulomb barriers. As a result,
the formation of carbon and other heavy elements proceeds through the triple-α reaction
in the centers of red giants. The conditions where this occurs have densities of 107 gm/cc
and temperatures of 108 K, and time scales of 1014 sec. When the Universe makes He the
temperature is about 109 K but the density of baryons is only 2×10−29ΩBh

2(T/T◦)
3 gm/cc =

2 × 10−5 gm/cc and the timescale is only 3 minutes, so the probability of a three body
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Fig. 24.— Mass fraction of various isotopes vs. time during the first few minutes after the
Big Bang. This run is for a baryon density of Ωbh

2 ≈ 0.03 which is higher than the best fit.

collision occurring is negligible even though the temperature is high. Because of the low
matter density, we need to concentrate on reactions that involve mainly abundant particles,
which are the photons, neutrinos and the electron-positron plasma (for T > 109).

The thermal equilibrium between neutrons and protons at t ≈ 1 sec is maintained by
weak interactions. The cross-section for the reaction νe + n→ p+ e− is given by

σ =
2π2

~
3ve(Eν +Q)2

fτnm5
ec

9
(220)

where Q = (mn − mp)c
2 = 1.293 MeV, the factor f = 1.634 (Peebles 1971) and τn is the

neutron mean life-time of 878.5± 1 sec. For Eν = 1 MeV this gives σ = 6 × 10−43 cm2, and
the cross-section scales roughly like E2

ν for high energy. The neutrino density is in thermal
equilibrium, so the interaction rate 〈nσv〉 is given approximately by

〈nσv〉 ≈
∫

[

4πgsp
2dp/h3

exp(pc/kT ) + 1
× 10−43 cm2

(

pc+Q

1 MeV

)2

c

]

= 4πgsc

(

kT

hc

)3

× 10−43
15
16

Γ(5)ζ(5)(kT )2 + 7
4
Γ(4)ζ(4)(kTQ) + 3

4
Γ(3)ζ(3)Q2

(1 MeV)2
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= 4πgsc

(

kT

hc

)3

× 10−43

(

23.33

[

kT

1 MeV

]2

+ 14.69

[

kT

1 MeV

]

+ 3.014

)

= 0.5 sec−1 at T = 1010 K (221)

for the gs = 1 appropriate for neutrinos. The neutrino density is nν = 7×1030(T/1010 K)3 cm−3.
The reaction e+ + n → p + νe essentially doubles the rate of n ↔ p interchanges. The ex-
pansion rate of the Universe is H so the weak interactions will freeze out when 〈nσv〉 < H .
We know that the density will be essentially equal to the critical density, so H =

√

8πGρ/3.
The density will be determined by the thermal equilibrium density of γ’s, ν’s and e+e−’s.
This gives

H =

√

8πG

3

aT 4 + 3 × (7/8)aT 4 + 2 × (7/8)aT 4

c2
= 0.5

(

T

1010 K

)2

sec−1 (222)

Thus the weak interactions freeze out when Tf ≈ 1010 K, and this leaves the n/(p+n) ≈ 0.14.
These neutrons then undergo the standard decay of free neutrons with a mean lifetime of
878.5 ± 1 seconds (Mathews et al., astro-ph/0408523) until the temperature falls enough to
allow deuterium to form.

The binding energy of deuterium is 2.2 MeV, and the temperature at the freeze out
of the weak interactions is only 1 MeV, so one might expect that deuterium would form
quite readily. But the reaction p + n ↔ d + γ has two rare particles on the left hand side
and only one rare particle on the right. Since the photon to baryon ratio is about 3 × 109,
deuterium will not be favored until exp(−∆E/kT ) = 10−9.5 which occurs when T = 109.1 K.
This happens when t = 102.1 seconds. As a result about 14% of the neutrons decay into
protons before they form deuterons, leaving a net neutron fraction of 0.14×(1−0.14) = 0.12.
Essentially all of these deuterons get incorporated into He4, so the final helium abundance by
weight is Ypri ≈ 0.24. This number depends only weakly on the photon to baryon ratio, and
is determined primarily by the strength of the weak interactions, the neutron-proton mass
difference, and the number of particle types with masses less than 1 MeV that contribute
to the expansion rate of the Universe during the weak freeze out. The close agreement
between the predicted 24% and the observed value is a very important confirmation of the
hot Big Bang model. A 20% change in the weak interaction rates or the expansion rate of
the Universe during the first 3 minutes after the Big Bang would destroy this agreement.
Figure 24 shows the time evolution of the abundances of various isotopes during the first
few minutes after the Big Bang.

The deuterium abundance can be used to determine the baryon density of the Universe.
We can simplify the reaction network that makes helium to d + d → He + γ. The binding
energy is 24 Mev, so the reverse reaction will not occur since deuterium doesn’t form until
kT < 100 keV. For this one reaction, we get the following equation for the deuteron fraction
Xd:

dXd

dt
= −2α(T )nBX

2
d = −2α(T1(t/t1)

−1/2)nB(t1)(t/t1)
−3/2X2

d (223)
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where α(T ) is the “recombination coefficent” for deuterons which will be small for high T ,
peak at intermediate T , and then be exponentially suppressed at low T by the Coulomb
barrier. This equation has the solution

X−1
d = 2nB(t1)

∫ ∞

t1

α(T1(t/t1)
−1/2)(t/t1)

−3/2dt+Xd(t1)
−1 (224)

The time versus temperature is given by

1.68aT 4

c2
=

3

32πGt2

t =
1.78 × 1020 K2

T 2
(225)

since the deuterium forms after the annihilation of the thermal e+e− plasma. Almost all of
the deuterium will be swept up into helium so the final deuterium abundance is only slightly
dependent on Xd(t1). Changing variables to T = T1

√

t1/t gives

Xd =
1

nB(t1)

T1

4t1
∫ T1

0
α(T )dT

=
T 3

1

nB(t1)

1

7.1 × 1020 K2
∫ T1

0
α(T )dT

(226)

and is thus inversely proportional to the baryon to photon ratio since nγ(t1) ∝ T 3
1 . This

ratio is usually quoted in terms of η = nB/nγ, or in terms of η10 = 1010η. Since the photon
density is known to be nγ = 411 cm−3 for T◦ = 2.725 K, we find nB(t◦) = 0.411η10×10−7/cc.
The critical density for H◦ = 100 km/sec/Mpc corresponds to nB = 1.12 × 10−5/cc, so

ΩBh
2 =

0.411η10 × 10−7

1.12 × 10−5
= 0.00367η10 (227)

For η10 > 7 some D is converted into He3, but the sum of D+He3 continues to follow an
inverse baryon density law.

A small amount of Li7 is also produced in the Big Bang, and the predicted abundance
agrees with the observed abundance in stars with very low metallicity which should have
close to primordial abundances, as long as the stars have radiative envelopes. Convective
envelopes carry the lithium down to hot regions of the star, and lithium is destroyed at high
temperatures.

Comparison of observed abundances with predicted abundances gives an allowed range
of baryon abundances of 2.5 < η10 < 6 (Copi et al., 1995), which corresponds to ΩBh

2 =
0.0142 ± 44%. Schramm & Turner (1997, astro-ph/9706069) give η10 = 6 ± 1 or ΩBh

2 =
0.022 ± 0.004. Burles, Nollett, Truran & Turner (1999, PRL, 82, 4176) give η10 = 5.1 ± 0.5
or ΩBh

2 = 0.019 ± 0.0024 and Kirkman, Tytler, Suzuki, O’Meara & Lubin (2003, astro-
ph/0302006) give a primordial D/H = 2.78+0.44

−0.38 × 10−5 from 5 QSO absorption line systems
implying η10 = 5.9±0.5 and ΩBh

2 = 0.0214±0.002 so the baryon density is well constrained.
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Figure 25 shows the abundances of various isotopes as a function of the baryon density. For
H◦ = 71 this gives ΩB = 0.043 which is much less than the measured Ω and very much less
than 1, so the Universe is primarily made of matter which did not take part in the reactions
leading to light elements. Thus most of the Universe must be non-baryonic dark matter.
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14. Last Scattering

In Peacock’s Cosmological Physics we find

d(nx)

dt
= −R(T )(nx)2 Λ

Λ + βe(T )
(228)

where R = 3 × 10−11T−1/2 cm3/s is the recombination coefficient into excited levels. Re-
combinations into the ground state produce an ionizing photon which immediately ionizes
another atom and are thus not effective. This neglects photoionizations from the ground
state but these turn off well before the last scattering surface. Also

dt

dz
= −3.09 × 1017(Ωh2)−1/2z−5/2 sec (229)

Combining these gives

d(x−1) = −f(T◦(1 + z))(Ωh2)−1/2(Ωbh
2)z1/2dz (230)

so x(z) ∝ (Ωh2)1/2/(Ωbh
2). The integral for optical depth is

∫

nxdt and since n(z) ∝ (Ωbh
2)

and dt ∝ (Ωh2)−1/2 the optical depth vs. redshift is independent of cosmological parameters.
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Peacock gives

τ(z) ≈ 0.37
( z

1000

)14.25

(231)

For this approximation e−τ = 0.5 when z = 1045. Using the equations in Peebles’ Principles

of Physical Cosmology I have computed the curves shown in Figure 26. The Saha equilibrium
value of xeq falls at redshifts a few hundred units higher than the actual x. The ratio of the
time constant for establishing ionization equilbrium to the age of the Universe, τ/t, varies
from few tenths to slightly less than 1, which explains why the ionization is close to but not
quite in equilibrium. The survival fraction e−τ is shown in Figure 27, which indeed shows
very little variation in the τ(z) curve for different cosmological models. e−τ = 0.5 occurs at
1 + z = 1085. The width of the surface of last scattering computed from the e−τ = 0.25 and
0.75 points is σz = 93.

The width in comoving radial distance is c(1 + z)(dt/dz)σz which scales like (Ωh2)−1/2.
The angular equivalent of this width is

θd =
c(1 + z)(dt/dz)σz

(1 + z)DA(z)
(232)

which scales in almost the same way with parameters as the angular scale for the first
Doppler peak. However, the sound speed in the photon-baryon gas before recombination
is not involved. The value is θd = 4.5′ for the ΛCDM model. One expects that Cℓ will
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be reduced for ℓ > 1/θd = 760 by the interference between the front and back sides of the
“surface” of last scattering.
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15. Horizon Problem

The horizon is the greatest distance we can see – the distance at which z = ∞. If we
write the FRW metric so the radial spatial part is simple, we get

ds2 = c2dt2 − a(t)2



dρ2 +R2
◦







sinh2 (ρR−1
◦ )

(ρR−1
◦ )

2

sin2 (ρR−1
◦ )







(

dθ2 + sin2 θdφ2
)



 (233)

and the proper radial distance to an object at z = ∞ is just

DH = ρ =

∫

cdt

a(t)
=

∫ ∞

0

(1 + z)c
dt

dz
dz (234)

This distance is known as the horizon distance. For an Ω = 1 matter-dominated Universe
DH is 2c/H◦.

If we evaluate the horizon for an observer at redshift z, then in comoving units (lengths
scaled to the current time), we have

DH(z) =

∫ ∞

z

(1 + z)c
dt

dz
dz =

2c

H◦
√

1 + z
(235)

If we look at two blobs of gas at Zrec ≈ 1100 when the Universe became transparent, sepa-
rated by an angle θ on the sky, then the comoving distance between them is 2 sin(θ/2)[DH(0)−
DH(z)], and if this is greater than 2DH(z) the two blobs of gas have disjoint domains of in-
fluence. This means that there is no event in spacetime that is in or on the past light cones
of both of the two blobs. This occurs whenever sin(θ/2) > 1/(

√
1 + z − 1) or θ > 3.6◦. But

the whole sky has a uniform CMBR temperature to within 1 part in 105. This appears to
require a very special initial condition for the Universe.

This can be seen clearly in a conformal spacetime diagram. This is a diagram that plots
ρ vs. the conformal time η, defined as dη = a(t)−1cdt = (1 + z)cdt. In terms of this time
variable, the metric becomes

ds2 = a(t)2



dη2 −



dρ2 +R2
◦







sinh2 (ρR−1
◦ )

(ρR−1
◦ )

2

sin2 (ρR−1
◦ )







(

dθ2 + sin2 θdφ2
)







 (236)

and the paths of light rays are obviously the ±45◦ lines ρ = ρ◦ ± (η − η◦). In order to
make a conformal spacetime diagram from an ordinary spacetime diagram we first divide
the spatial coordinate by a(t). This makes the worldlines of comoving galaxies run straight
up and down. We then stretch the time axis near the Big Bang to keep the slope of null rays
at ±45◦.
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Fig. 28.— From top to bottom: a) Ω = 1 spacetime in standard form; b) with distances
divided by a(t); c) time axis “stretched” into conformal time; d) a wider view showing the
Universe is much bigger than the observable Universe.
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16. Inflationary Scenario

16.1. Spontaneous Symmetry Breaking

Modern theories of particle physics invoke spontaneous symmetry breaking to explain
the multiple manifestations of a presumably unified interaction. For example, the electroweak
theory at ordinary energies shows two very different behaviors: the long-range electromag-
netic force mediated by massless photons, and the very short-range weak nuclear force carried
by the massive W and Z bosons. The way that spontaneous symmetry breaking produces
these effects is to have a symmetric model whose lowest energy states are not symmetric.
An an example of this is a vacuum energy density which is a function of two fields φ1 and
φ2 given by

V (φ1, φ2) = λ(σ2 − (φ2
1 + φ2

2))
2 (237)

This potential has a ring-shaped minimum that is reminiscent of a sombrero, so it is often
called the Mexican-hat potential. It is obvious that the potential is symmetric under ro-
tations in the two dimensional φ space, and that φ1 and φ2 are treated identically in the
theory. But once the system settles into one of the states with lowest energy, then there will
be two very different modes of oscillation. We can assume that the system settles into the
state with φ1 = σ and φ2 = 0. This means that there is a non-zero vacuum expectation value

since 〈0|φ1|0〉 = σ. Let ψ = φ1 − σ and expand the potential energy for small values of ψ
and φ2, giving

V (ψ, φ2) ≈ 4λσ2ψ2 + . . . (238)

The Lagrangian density is then

L = ∂µψ∂
µψ − 4λσ2ψ2

+ ∂µφ2∂
µφ2 (239)

This Lagrangian describes a massless boson φ2 and a massive boson ψ with mass 2
√
λσ.

These equations are written using ~ = 1 and c = 1, so the units for an energy density are
M4, and the units of ∂µ are M1, so the units of φ are also M1. Since σ and φ both have
the units of M , the coefficient λ is a dimensionless number in the theory. This mechanism
for spontaneous symmetry breaking is known as the Higgs mechanism, and the particles
predicted are called Higgs bosons.

16.2. Topological Defects

Obviously this model is not elaborate enough to produce the electroweak force because
that has 4 different bosons. But this simple model with two scalar fields does demonstrate
a fundamental property of spontaneous symmetry breaking: topological defects. Consider a
field configuration with spatially varying φ1 and φ2, given by

φ1 = σf(r)
x

√

x2 + y2
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φ2 = σf(r)
y

√

x2 + y2
(240)

This field configuration has the φ field making a full rotation in φ space as the spatial
coordinates make one loop around the z-axis. The energy per unit dz is given by

T = 2π

∫

(

σ2

[

(

df

dr

)2

+

(

f

r

)2
]

+ λσ4(1 − f(r)2)2

)

rdr (241)

To minimize the last term we want f(r) = 1, but to make the (f/r)2 term less than infinity
we need f(0) = 0, and the (df/dr)2 term limits the rate at which the field magnitude can
approach the minimum at σ. Thus there is a minimum possible energy per unit length
for this configuration, which defines the tension of the cosmic string to be this minimum
T = O(σ2). For σ ≈ 100 GeV, which would be appropriate for the breaking the electroweak
symmetry, the string tension is about 6× 1017 GeV/cm or an equivalent linear mass density
of 1 µg/cm. For the σ ≈ 1016 GeV needed to break a grand unified theory, the mass per
unit length is 1022 gm/cm.

Another kind of topological defect is possible with three scalar fields and a vacuum
energy density V = λ(σ2−

∑

φ2
i )

2. Now the fields can be arranged in a radial pattern around
a point, leading to a pointlike topological defect with a mass M ≈ σ/

√
λ ≈ 1016 GeV for

a typical GUTs σ. If the spontaneous symmetry breaking due to these fields leads to the
standard model, then this pointlike defect has a magnetic charge, and is thus an ultramassive
magnetic monopole.

16.3. Monopole Problem

If the spontaneous symmetry breaking occurs when kT ≈ 1015 GeV, then the time
is about t = 10−36 sec, and the Higgs fields will probably only be uniform on patches of
size ct = 3 × 10−26 cm. Thus a density of about 1078 monopoles per cc could easily be
generated. The expansion of the Universe since this time would reduce the density by a
factor of 1081, and only a small fraction of the monopoles would have avoided annihilating
with an oppositely charged monopoles, but the expected current density of monopoles is
still about one per cubic meter. Given their high mass, this leads to Ω = 1015! This is the
monopole problem is the standard hot Big Bang model.

16.4. Inflation to the rescue

The hot Big Bang model has three problems:

1. the special initial conditions needed to explain the flatness and oldness of the current
Universe,
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2. the special initial conditions needed to explain the near isotropy of the CMBR, and

3. a surfeit of monopoles.

Fortunately a slight modification of the potential V (|φ|) can remove these problems. The
modification is to make the central hump in the potential extremely flat. Thus for 0 < |φ| <
σ, we suppose that V ≈ O(σ4) but the slope |dV/dφ| << O(σ3). [The slope is negative
of course.] Now when the Universe cools to the point where the spontaneous symmetry
breaking will occur, the φ fields will probably have some value between 0 and σ. Because
φ is already non-zero, the monopoles will have already been generated. Now, because the
slope of the potential is so small, it will take a long time for the φ fields to reach the
global minimum at |φ| = σ. During this time, the Universe has a large vacuum energy
density V ≈ σ4. Because of this vacuum energy density, the Universe undergoes exponential
expansion, with a(t) ∝ exp(Ht). Now it is only necessary to have the number of e-foldings
during the exponential expansion be larger than about 70 so the scale factor grows by a
factor of 1030 or more. Figure 30 shows 1 + z = 1/a vs. time with and without inflation.

This expansion will solve the three problems of the Big Bang:

1. Because the scale factor grows by 1030 during inflation, but we normalize a(t◦) = 1
now, the value of a at the Planck time becomes 10−30 times smaller. But the density ρ
does not change during the vacuum dominated inflationary epoch. Using the equation

(

1

Ω(t)
− 1

)

=

(

1

Ω◦
− 1

)(

ρ◦a(t◦)
2

ρ(t)a(t)2

)

(242)

we see that the initial conditions on Ω are relaxed by a factor of 1060 so that just about
any starting value will work.

2. The horizon problem arose because the conformal time before recombination was much
less than the conformal time after recombination, and the conformal time measures how
far light can travel on a scale with all lengths scaled up to their current size. But the
conformal time is given by

η =

∫

(1 + z)cdt =

∫

ct(1 + z)d ln t (243)

so the contribution per logarithmic time interval is given by t×(1+z), shown in Figure
31. This peaks after recombination in the standard model but before recombination
in the inflationary model. To say it in words, a region 3 × 10−26 cm across becomes
homogeneous before inflation starts, and then grows to be 3 × 103 cm at the end of
inflation. This region then grows another factor of 3 × 1027 in the normal hot Big
Bang phase following inflation, leading to a homogeneous patch 1031 cm across, which
is larger than the observable Universe.
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3. The monopole density is reduced by a factor of 1090 because the inflation occurs after

the spontanteous symmetry breaking. So instead of one monopole per cubic meter,
there is at most one monopole per observable Universe.

While inflation will get rid of monopoles, it will also get rid of baryons by driving the
net baryon density down by a factor of 1090. GUTs allow the possibility of proton decay
and also of baryogenesis, where a combination of a violation of baryon number conservation
and a violation of time reversal invariance and the expansion of the Universe leads to the
creation of more baryons than antibaryons. Obviously this process must occur after inflation.
The latest allowable time for baryogenesis is the electroweak → EM+weak transition, which
occurs about 1 picosecond after the Big Bang. The earliest time that inflation could occur
is the Planck time, and this would require a separate solution to the monopole problem.
Beyond this limits, very little can be said for certain about inflation. So most papers about
inflationary models are more like historical novels than real history, and they describe possible
interactions that would be interesting instead of interactions that have to occur. As a result,
inflation is usually described as the inflationary scenario instead of a theory or a hypothesis.
However, it seems quite likely the inflation did occur, even though we don’t know when or
what the potential was. If inflation occured, then there is a fairly definite prediction made
about the primordial density fluctuations that are the seeds for galaxy formation and also
produce the small anisotropy of the CMBR seen by COBE. There is also a fairly definite
prediction about the value of Ω: since 71 e-foldings during inflation are just as likely as 70
or 72 e-folding, the probability of a given range of Ω has to be proportional to dN where
N is the number of e-foldings. Thus the probability of 0.9 < Ω < 0.99 is the same as the
probability of 0.99 < Ω < 0.999 which is the same as the probability of 0.999 < Ω < 0.9999
etc. There is an infinite accumulation of probability at Ω = 1. An value of Ω that is definitely
not equal to 1 is evidence against inflation. But this is Ωtot, so a flat vacuum-dominated
model with Ωm◦ + Ωv◦ = 1 is consistent with inflation.
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Fig. 29.— Illustration of how inflation solves the flatness-oldness problem: if inflation occurs
then the radius of curvature of the Universe gets very big, while the radius of the surface of
last scattering stays the same, since inflation occurs before last scattering. This is shown by
the top diagram where the radius of curvature is 16 times the radius of the last scattering
surface. Without inflation, the radius of curvature can easily be comparable to the radius of
the last scattering surface, as shown in the bottom diagram, where the radius of curvature
is only twice the radius of the last scattering surface. The bottom diagram corresponds to
Ω = 1.023 with current knowledge of the radius of the last scattering surface, so observed
limits on Ω actually guarantee a radius of curvature only slightly larger than the one shown
in the bottom diagram.
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Fig. 30.— The redshift vs. time for the standard hot Big Bang model (dashed) and for a
model with inflation.
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Fig. 31.— The contribution to the conformal time per octave in time, (1 + z)t, for the
standard hot Big Bang model (dashed) and for a model with inflation.
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17. Fluctuations from Inflation

Inflation produces such a huge expansion that quantum fluctuations on the microscopic
scale can grow to be larger than the observable Universe. These perturbations can be the
seeds of structure formation and also will create the anisotropies seen by COBE for spherical
harmonic indices ℓ ≥ 2. For perturbations that are larger than ≈ cst (or ≈ cs/H) we can
ignore pressure gradients, since pressure gradients produce sound waves that are not able to
cross the perturbation in a Hubble time. In the absence of pressure gradients, the density
perturbation will evolve in the same way that a homogeneous Universe does, and we can use
the equation

ρa2

(

1

Ω
− 1

)

= const (244)

along with the assumptions that Ω ≈ 1 for early times, and ∆ρ << ρ as indicated by the
smallness of the ∆T ’s seen by COBE, to derive

−ρa2

(

1

Ω
− 1

)

≈ ρcrita
2∆Ω ≈ ∆ρa2 = const (245)

and hence

∆φ =
G∆M

R
=

4π

3

G∆ρ◦(aL)3

aL
=

1

2

∆ρ◦
ρcrit

(H◦L)2 (246)

where L is the comoving size of the perturbation. This is independent of the scale factor so
it doesn’t change due to the expansion of the Universe.

During inflation the Universe is approximately in a steady state with constant H . Thus
the magnitude of ∆φ for perturbations with physical scale c/H will be the same for all times
during the inflationary epoch. But since this constant physical scale is aL and the scale
factor a changes by more than 30 orders of magnitude during inflation, this means that the
magnitude of ∆φ will be the same over 30 decades of comoving scale L. Thus we get a strong
prediction that ∆φ will be the same on all observable scales from c/H◦ down to the scale
which is no longer always larger than the sound speed horizon. This means that

∆ρ

ρ
∝ L−2 (247)

so the Universe becomes extremely homogeneous on large scales even though it is quite
inhomogeneous on small scales.

This behaviour of ∆φ being independent of scale is called equal power on all scales.

It was originally predicted by Harrison (1970, PRD, 1, 2726-2730) and Zel’dovich (1972,
MNRAS, 160, 1p) and Peebles & Yu (1970, ApJ, 162, 815) based on a very simple argument:
There is no scale length provided by the early Universe, and thus the perturbations should
be scale-free: a power law. Therefore ∆φ ∝ Lm. The gravitational potential divided by c2

is a component of the metric, and if it gets comparable to unity then wild things happen.
If m < 0 then ∆φ gets large for small L, and many black holes would form. But we
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observe that this did not happen. Therefore m ≥ 0. But if m > 0 then ∆φ gets large
on large scales, and the Universe would be grossly inhomogeneous. But we observe that
this is not the case, so m ≤ 0. Combining both results requires that m = 0, which is a
scale-invariant perturbation power spectrum. This particular power law power spectrum is
called the Harrison-Zel’dovich spectrum. It was expected that the primordial perturbations
should follow a Harrison-Zel’dovich spectrum because all other answers were wrong, but
the inflationary scenario provides a good mechanism for producing a Harrison-Zel’dovich
spectrum.

Sachs & Wolfe (1967, ApJ, 147, 73) show that a gravitational potential perturbation
produces an anisotropy of the CMBR with magnitude

∆T

T
=

1

3

∆φ

c2
(248)

where ∆φ is evaluated at the intersection of the line-of-sight and the surface of last scattering
(or recombination at z ≈ 1100). The (1/3) factor arises because clocks run faster by factor
(1 + φ/c2) in a gravitational potential, and we can consider the expansion of the Universe
to be a clock. Since the scale factor is varying as a ∝ t2/3 at recombination, but faster
expansion leads to a decreased temperature by ∆T/T = −(2/3)∆φ/c2 which when added
to the normal gravitational redshift ∆T/T = ∆φ/c2 yields the (1/3) factor above. The
anisotropy is usually expanded in spherical harmonics:

∆T (n̂)

T
=
∑

ℓ

ℓ
∑

m=−ℓ

aℓmYℓm(n̂) (249)

Because the Universe is approximately isotropic the probability densities for all the different
m’s at a given ℓ are identical. Furthermore, the expected value of ∆T (n̂) is obviously zero,
and thus the expected values of the aℓm’s is zero. But the variance of the aℓm’s is a measurable
function of ℓ, defined as

Cℓ = 〈|aℓm|2〉 (250)

The harmonic index ℓ associated with an angular scale θ is given by ℓ ≈ 180◦/θ, but the
total number of spherical harmonics contributing to the anisotropy power at angular scale
θ is given by ∆ℓ ≈ ℓ times 2ℓ + 1. Thus to have equal power on all scales one needs to
have approximately Cℓ ∝ ℓ−2. Given that the square of the angular momentum operator is
actually ℓ(ℓ+ 1), it is not surprising that the actual angular power spectrum of the CMBR
predicted by “equal power on all scales” is

Cℓ =
4π〈Q2〉

5T 2
◦

6

ℓ(ℓ+ 1)
(251)

where 〈Q2〉 or Q2
rms−PS is the expected variance of the ℓ = 2 component of the sky, which

must be divided by T 2
◦ because the aℓm’s are defined to be dimensionless. The “4π” term

arises because the mean of |Yℓm|2 is 1/(4π), so the |aℓm|2’s must be 4π times larger to
compensate. Finally the quadrupole has 5 components while Cℓ is the variance of a single
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component, giving the “5” in the denominator. The COBE DMR experiment determined
√

〈Q2〉 = 18 µK, and that the Cℓ’s from ℓ = 2 to ℓ = 20 were consistent with Equation 251.

The angular correlation function of the anisotropy is given by

C(θ) =
〈∆T (n̂)∆T (n̂′)〉

T 2
◦

=
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(cos θ) (252)

where Pℓ is a Legendre polynomial. If the temperature is measured in a beam with a finite
beamwidth, then there will be reduction in the effect of high ℓ terms. For example, if the
beam is approximated by a Gaussian with FWHM given by σ

√
8 ln 2, then the response to

Yℓm will be reduced by a factor of exp(−ℓ(ℓ+1)σ2/2), giving an effective correlation function

Cσ(θ) =
〈∆T (n̂)∆T (n̂′)〉

T 2
◦

=
1

4π

∑

ℓ

(2ℓ+ 1)Cℓ exp(−ℓ(ℓ+ 1)σ2)Pℓ(cos θ) (253)

This low-pass filtering stops the logarithmic divergence that would otherwise exist as θ → 0
for Cℓ ∝ 1/(ℓ(ℓ + 1)). Most experiments (other than COBE and WMAP) do not produce
a map of the whole sky. Instead they measure temperature differences between points sep-
arated by some chopping angle on the sky. A “single-subtracted” experiment with chopper
throw θ measures ∆T/T◦ = [T (n̂) − T (n̂+ θ)]/T◦. The variance of this measured value is

〈

(

∆T

T◦

)2
〉

=

〈

(

∆T (n̂)

T◦

)2
〉

+

〈

(

∆T (n̂+ θ)

T◦

)2
〉

− 2

〈

∆T (n̂)

T◦

∆T (n̂ + θ)

T◦

〉

= 2(C(0) − C(θ)) (254)

Including both the effect of chopping and the beamsize gives

〈

(

∆T

T◦

)2
〉

= 2(Cσ(0)−Cσ(θ)) =
1

4π

∑

ℓ

(2ℓ+1)Cℓ exp(−ℓ(ℓ+1)σ2)(2−2Pℓ(cos θ)) (255)

More complicated chopping patterns such as double subtraction with weights -0.5, 1 and -0.5
and easily be used instead of single subtraction, and give modifications of the θ dependence.

17.1. Relation of Potential and Density Perturbations

The density perturbations are usually described in terms of

δ(~r) =
∆ρ

ρ
=

(2π)3/2

V
1/2
u

∑

δke
i~k·~r (256)

where Vu is the volume of a box with periodic boundary conditions. See Equation (21.39)
in Peebles. Using a normalizing box makes it easier to keep track of the dimensions of
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variables. Note that δ(~r) is dimensionless but δk has units of length3/2. The two point
correlation function of the density is given by

ξ(~r) = 〈δ(~r′)δ(~r′ + ~r)∗〉 =
(2π)3

Vu

∑∑

δkδ
∗
k′

〈

ei~k·~r′e−i~k′·(~r′+~r)
〉

=
(2π)3

Vu

∑

|δk|2e−i~k·~r (257)

But since the spacing of the k’s in the sum is given ∆kx = 2π/Lx, where Lx is the length of
the box in x, we have ∆kx∆ky∆kz = (2π)3/Vu. We define the power spectrum of the density
perturbations as

P (k) =
〈

|δk|2
〉

(258)

which has the units of length3, and get

ξ(r) =

∫

P (k)e−i~k·~rd3~k =

∫

P (k)k2

∫

e−ikr cos θdΩdk

=

∫

P (k)k2 2π

∫

e−ikrµdµdk = 4π

∫

k2P (k)
sin(kr)

kr
dk (259)

When dealing with perturbations in an expanding Universe it is most convenient to
work in comoving coordinates. Poisson’s equation involves derivatives that must be taken in
physical coordinates given by ax where a(t) is the scale factor, normalized to a(t◦) = 1. If
φ = eikx we see that

∇2φ =
∂2eikx

∂(ax)2
= −k

2

a2
eikx = 4πGρδ (260)

Letting

∆φ(~r) =
(2π)3/2

V
1/2
u

∑

φke
i~k·~r (261)

we see that
φk = −4πGρma

2δkk
−2 (262)

This ρm only includes the matter density and the density contrast δ grows like D(t), the
linear growth function normalized to D(t◦) = 1. For an EdS model D(t) = a(t) but this is
not true for a ΛCDM model. Since ρma

2δ is independent of time for linear perturbations
larger than the sound speed horizon while Ωm ≈ 1, we see again that φ is independent of
scale during the expansion of the Universe. We can also derive the correlation function of
the potential fluctuations:

Cφ(r) = 64π3G2ρm
2a4

∫

P (k)k−2 sin(kr)

kr
dk (263)

but since ρma
2δ is ρma

3(D(t)/a)δ(t◦) we can write this as ρma
2δ = ρcrit(t◦)Ωm◦(D(t)/a)δ(t◦).

Using ∆T/T = φ/(3c2) gives the ∆T/T correlation function in terms of the density power
spectrum at t◦:

C(θ) =
Cφ(r)

9c4
= π

(

H◦

c

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)2 ∫

P (k)k−2 sin(kr)

kr
dk (264)
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and the relationship between r and θ is given by

r = 2RLS sin(θ/2) (265)

with the comoving circumference over 2π of the surface of last scattering given by

RLS = (1 + zLS)DA(zLS) (266)

Since the Legendre polynomials are orthogonal in [−1, 1], we can find the Cℓ’s from C(θ)
using

∫

Pℓ(cos θ)C(θ)d[cos θ] =
2ℓ+ 1

4π
Cℓ

∫ +1

−1

Pℓ(µ)2dµ =
Cℓ

2π
(267)

Thus

Cℓ = 2π2

(

H◦

c

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)2 ∫

k−2P (k)

∫

sin(2kRLS sin(θ/2))

2kRLS sin(θ/2)
Pℓ(cos θ)d[cos θ]dk

(268)

If we use the expansion of a plane wave into spherical harmonics,

ei~k·~r = 4π

∞
∑

ℓ=0

iℓjℓ(kr)

ℓ
∑

m=−ℓ

Y ∗
ℓm(θ, φ)Yℓm(θ′, φ′)

=
∞
∑

ℓ=0

iℓ(2ℓ+ 1)jℓ(kr)Pℓ(cos γ) (269)

where jℓ(x) is a spherical Bessel function, (θ, φ) is the direction of ~r, (θ′, φ′) is the direction of
~k, and γ is the angle between ~k and ~r, we can find a more convenient form for the relationship
between P (k) and Cℓ. The density correlation between two points ~r1 and ~r2, which are both
situated on the last scattering surface (|~r| = RLS) is given by

ξ = 〈δ(~r1)δ(~r2)∗〉 =
(2π)3

Vu

∑

k

∑

k′

〈δkδ∗k′〉 ei~k·~r1e−i~k′·~r2

=
(2π)3

Vu

∑

k

|δk|2ei~k·~r1e−i~k·~r2

=
(2π)3

Vu

∑

k

|δk|24π
∞
∑

ℓ=0

iℓjℓ(kRLS)
ℓ
∑

m=−ℓ

Y ∗
ℓm(θ1, φ1)Yℓm(θ′, φ′)

× 4π
∞
∑

ℓ′=0

(−i)ℓ′jℓ′(kRLS)
ℓ′
∑

m′=−ℓ′

Yℓ′m′(θ2, φ2)Y
∗
ℓ′m′(θ′, φ′) (270)

Now the sum over k will be converted into an integral over k that will include an integral
over (θ′, φ′) which will force ℓ = ℓ′ and m = m′, since

∫

Yℓm(θ′, φ′)Y ∗
ℓ′m′(θ′, φ′)dΩ′ = δℓℓ′δmm′ (271)
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giving

ξ =

∫

k2P (k)

[

4π
∞
∑

ℓ=0

j2
ℓ (kRLS)4π

ℓ
∑

m=−ℓ

Y ∗
ℓm(θ1, φ1)Yℓm(θ2, φ2)

]

dk (272)

Now the sum of spherical harmonics is

4π
ℓ
∑

m=−ℓ

Y ∗
ℓm(θ1, φ1)Yℓm(θ2, φ2) = (2ℓ+ 1)Pℓ(cos γ) (273)

where γ is the angle between ~r1 and ~r2, so

ξ = 4π

∞
∑

ℓ=0

(2ℓ+ 1)Pℓ(cos γ)

∫

k2P (k)j2
ℓ (kRLS)dk (274)

Multiplying by
(

4πGρma
3

3k2c2D(t)

)2

=
1

4

(

H◦

c

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)2

k−4 (275)

to get the correlation function of the temperature gives

C(γ) = π

(

H◦

c

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)2 ∞
∑

ℓ=0

(2ℓ+ 1)Pℓ(cos γ)

∫

k−2P (k)j2
ℓ (kRLS)dk (276)

from which we can easily read off the angular power spectrum:

Cℓ = 4π2

(

H◦

c

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)2 ∫

k−2P (k)j2
ℓ (kRLS)dk (277)

For the inflationary prediction P (k) = Ak we get for the quadrupole

C2 = 4π2

(

H◦

c

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)2

A

∫

j2
2(kRLS)

dk

k

= 4π2

(

H◦

c

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)2

A

∫

j2
2(x)

dx

x

=
π2

3

(

H◦

c

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)2

A (278)

Note that
∫

j2
ℓ (x)x

−1dx = 1/[2ℓ(ℓ+ 1)] so Cℓ = 6C2/[ℓ(ℓ+ 1)].

Combining this with Equation 251 gives

A =
3

π2

(

c

H◦

)4(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)−2
4π〈Q2〉

5T 2
◦

(279)
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Since P (k) has dimensions of length3, it is reasonable to normalize it and talk about the
dimensionless combination P ′ = (H◦/c)

3P (k). Furthermore it is good to use a dimensionless
wavenumber k′ = (ck/H◦), which also puts distances on a redshift scale. Since we actually
use redshifts to determine distances this is a very reasonable normalization. If we write

(

H◦

c

)3

P (k) = A′ ck

H◦
(280)

then we see that the CMBR anisotropy gives a value of

A′ = (H◦/c)
4A =

12〈Q2〉
5πT 2

◦

(

Ωm◦
D(t)

a(t)

∣

∣

∣

∣

LS

)−2

(281)

that is dimensionless and independent of uncertainty about H◦.
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18. Perturbations

The homogeneous and isotropic models we have discussed so far are a good repre-
sentation of the Universe on the largest length scales, but on smaller length scales large
inhomogeneities obviously exist. Therefore we need to study how density inhomogeneities
grow under the influence of gravity, especially in an expanding Universe. But first we will
write the equations for hydrodynamics combined with gravity in a stationary background:
These are:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (282)

for conservation of mass, and

∂~v

∂t
+ (~v · ~∇)~v = −~∇φ−

~∇P
ρ

(283)

for conservation of momentum (or F = ma), and Poisson’s equation:

∇2φ = 4πGρ (284)

We now linearize these equations using δ = ∆ρ/ρ, and remembering that the unperturbed

~v = 0, and that the unperturbed pressure P is a constant. The term (~v · ~∇)~v is second order
in the velocity and can be dropped for a linear analysis.

The linear version of Eqn(282) is

∂δ

∂t
= −~∇ · ~v (285)

and if we take another time derivative we get

∂2δ

∂t2
= −~∇ · ∂~v

∂t
= ∇2φ+

∇2P

ρ
(286)

when we substitute the linearized momentum equation on the RHS. Using Poisson’s equation
and ∆P = c2s∆ρ, where cs is the sound speed, gives us

∂2δ

∂t2
= 4πGρδ + c2s∇2δ (287)

This has the dispersion relationship (for waves of the form δ ∝ exp(ikx− iωt)):

ω2 = c2sk
2 − 4πGρ (288)

Thus short wavelength perturbations travel as sound waves, but waves with wavevectors k <√
4πGρ/cs are unstable growing perturbations. This is the Jeans instability, and the length

LJ = cs/
√

4πGρ is the Jeans length. The maximum growth rate of the Jeans instability is
one e-folding in a time given by tJ = 1/

√
4πGρ.
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In an expanding Universe, with a background density given by the critical density, the
expansion of the Universe during one Jeans time is

HtJ =
H√
4πGρ

=

√

2

3

3H2

8πGρ
=

√

2

3
(289)

so that before a perturbation can e-fold once the Universe has gotten about ten times less
dense which increases the e-folding time by a factor of three. Therefore the expansion of the
Universe has a large effect on the growth of small amplitude density perturbations and we
must explicitly allow for it.

18.1. Expanding Background

The way to allow for the expansion is to linearize around a homologously expanding
solution. Let us use new variables ~x and ~u defined by

~r = R(t)~x

~v = Ṙ(t)~x+R(t)~u (290)

In these new coordinates, every ~∇ will have to be divided by R, and

∂~v

∂t
= R̈(t)~x+ Ṙ(t)~u+R(t)

∂~u

∂t
(291)

The first term on the RHS will combine with the gravitational effect of the unperturbed
background to give us the equation for R̈ that we have already discussed. So we will drop
it and the gravitational effect of the unperturbed background, and just use R(t) or a(t) as
derived earlier. The second term on the RHS introduces an effective velocity decay which
is caused by the fact that a constant ~v, which actually corresponds to zero force, leads to a
~u that decays like 1/R. The other change we have to make is that since the unperturbed

velocity ~v is no longer zero, the convective term (~v · ~∇)~v can no longer be dropped when
linearizing the equation. This term gives the effect due to the fact that ~u at ~x is replaced by
the value of ~u at ~x−~u∆t. But when this fluid moves into ~x, it is ~v, not ~u, that is constant for
force free motion. The change in ~x, ∆~x = ~u∆t, produces a change in ~v of Ṙ∆~x, which then
adds (Ṙ/R)~u to the convective term. This contribution is only first order in the perturbation
and must be kept. The net result is a momentum conservation equation given by

∂~u

∂t
+

1

R
(~u · ~∇)~u+ 2

Ṙ

R
~u = −

~∇P
ρR

−
~∇φ
R

(292)

which is then combined with the mass conservation equation

∂δ

∂t
+

1

R
~∇ · [(1 + δ)~u] = 0 (293)
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and the Poisson equation
∇2φ = 4πGR2ρδ (294)

First take the time derivative of the linearized Eqn(293):

∂2δ

∂t2
= − 1

R
~∇ · ∂~u

∂t
(295)

and then use the linearized version of Eqn(292)

∂2δ

∂t2
= − 1

R
~∇ ·
(

−2
Ṙ

R
~u−

~∇P
ρR

−
~∇φ
R

)

(296)

Use Eqn(293) to replace ~∇ · ~u with −∂δ/∂t, giving the linearized perturbation evolution
equation

∂2δ

∂t2
+ 2

Ṙ

R

∂δ

∂t
=
(cs
R

)2

∇2δ + 4πGρδ (297)

For simple cases we can analytically solve this equation. If the size of the perturbations
is much greater than cs/H then the ∇2δ term on the RHS can be dropped. This condition
will be met for most perturbations in a matter-dominated Universe since the sound speed
is small. For a radiation-dominated Universe it will only hold for perturbations bigger than
the Hubble scale c/H because the sound speed will be c/

√
3. In a matter-dominated critical

density Universe the Equation becomes

∂2δ

∂t2
+

4

3t

∂δ

∂t
= 4πGρcritδ =

2

3t2
δ (298)

which has power law solutions δ ∝ tα with α = 2/3 and α = −1. The first solution grows
with time while the second decays with time. The growing mode has an amplitude δ that is
proportional to the scale factor, so an 0.01% perturbation at (1 + z) = 1000 will grow to be
10% at z = 0. For a low density Universe one gets

∂2δ

∂t2
+

2

t

∂δ

∂t
= 0 (299)

which has power law solutions with α = 0 and −1. So the growing mode does not grow
when the density is well below the critical density. If there is a cosmological constant then
when it dominates the density we have

∂2δ

∂t2
+ 2H

∂δ

∂t
= 0 (300)

which has solutions δ = constant and exp(−2Ht). Thus the growing mode stops growing
when the Universe becomes vacuum-dominated. The current growth rate of the growing
mode (δ(t) = D(t)) is often approximated as

∂ lnD

∂ ln a
≈ Ω0.6

m◦ (301)

This factor combined with the mass conservation equation allows one to compute peculiar
velocities from density contrasts and vice versa.
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18.2. Two Component Model

We can use the equation developed above to calculate the collapse of dark matter con-
centrations in a uniform background of radiation. In this case the relevant time is during
matter-radiation equality at z ≈ 3, 300. As a result the time dependence of the scale factor
cannot be described by a simple power law during this epoch. The variable we will use is
y = ρm/ρr. Since ρm ∝ R−3 and ρr ∝ R−4, we see that y ∝ R. We need to convert the time
derivatives of δ to derivatives with respect to y using:

∂δ

∂t
=
∂δ

∂y

∂y

∂t
=
∂δ

∂y
Ṙ (302)

and then
∂2δ

∂t2
=

∂

∂t

(

∂δ

∂y
Ṙ

)

=
∂δ

∂y
R̈ +

∂2δ

∂y2
Ṙ2 (303)

We assume that the total density is always the critical density, and use the gravitational
force equation to set

R̈ = −4πG

3
ρ

(

1 +
3P

ρc2

)

R = −4πG

3

3

8πG

(

Ṙ

R

)2
(

1 +
1

1 + y

)

R (304)

The 4πGρδ term on the RHS should only include the matter density since the radiation field
doesn’t participate in the collapse. The matter density is

ρm =
3

8πG

(

Ṙ

R

)2
(

y

1 + y

)

(305)

With all of these substitutions we have

Ṙ2 ∂
2δ

∂y2
+

(

2
Ṙ2

R
+ R̈

)

∂δ

∂y
= 4πGρmδ

Ṙ2 ∂
2δ

∂y2
+ Ṙ2

(

2

y
− 2 + y

2y(1 + y)

)

∂δ

∂y
= Ṙ2 3δ

2y(1 + y)

∂2δ

∂y2
+

2 + 3y

2y(1 + y)

∂δ

∂y
=

3δ

2y(1 + y)
(306)

which has a growing mode given by

δ ∝ 1 + 3y/2 (307)

Thus while the Universe is radiation dominated the expansion is so fast that matter has
little chance to collapse. By the time matter and radiation are equal in density, initial
perturbations in the matter density have grown by a factor of 2.5. After zeq ≈ 3, 300, the
matter perturbations grow by another factor of 3, 300.
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18.3. Scales larger than c/H

Very large scale perturbations can be treated as separate homogeneous Universes. The
equation we derived for the evolution of (Ω−1 − 1) can be used to determine their behavior.
We know that

1

Ω
− 1 ∝ 1

ρa2
∝
{

(1 + z)−1 for matter dominated
(1 + z)−2 for radiation dominated.

(308)

For the matter dominated case this gives growth proportional to the scale factor just like
the previous analysis in this section. For radiation dominated cases we get faster growth:
δ ∝ a2 ∝ t. This is because for scales larger than c/H , photons are not able to stream
out of a density enhancement, and their gravitational field contributes to the growth of the
perturbation. While the large radiation pressure leads to a high sound speed, the pressure
gradients are still low because of the large linear size of the perturbations. The modifications
to the equations for δ are a factor of 4/3 in the mass conservation equation to allow for the
effect of pressure:

∂δ

∂t
+

4

3R
~∇ · [(1 + δ)~u] = 0 (309)

and a factor of two increase in the gravitational force to allow for pressure in

∂~u

∂t
+

1

R
(~u · ~∇)~u+ 2

Ṙ

R
~u = −

~∇P
ρR

− 2~∇φ
R

(310)

The combined linearized equation is then

∂2δ

∂t2
= − 4

3R
~∇ ·
(

−2
Ṙ

R
~u−

~∇P
ρR

− 2~∇φ
R

)

(311)

Use Eqn(309) to replace ~∇·~u with −(3/4)∂δ/∂t, giving the linearized perturbation evolution
equation

∂2δ

∂t2
+ 2

Ṙ

R

∂δ

∂t
=

4

3

[

(cs
R

)2

∇2δ + 8πGρδ

]

(312)

for the radiation dominated case. For scales >> cst, with ρ = ρcrit = 3/(32πGt2) and
Ṙ/R = 1/(2t) this becomes

∂2δ

∂t2
+

1

t

∂δ

∂t
=

1

t2
δ (313)

which has power law solutions δ ∝ tα for α = −1 (a decaying mode) and α = 1: a mode
growing like the scale factor squared.

18.4. CDM Model

We now have the pieces necessary to put together the Cold Dark Matter (CDM) model.
In the simplest version of this model the only components of the Universe are the CMBR
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(and thermal massless neutrino) radiation and pressureless matter (hence cold) which does
not scatter, absorb or emit electromagnetic radiation (hence dark). The initial perturbations
are adiabatic, which means that the radiation and matter density perturbations are in phase,
and that nγ/nDM = const. The initial power spectrum is a Harrison-Zel’dovich spectrum;
P (k) = Ak.

If a perturbation has a scale that is larger than c/H at the time that the Universe
goes from radiation-dominated to matter-dominated (this is zeq ≈ 2.4 × 104ΩMh

2), then it
will always be outside the sound speed horizon. This happens because once the Universe is
matter-dominated the sound speed drops to zero. Because this perturbation is always larger
than cs/H it will grow as δ ∝ (ρa2)−1 at all times, which is ∝ a2 before zeq and ∝ a after zeq.
Even if it does cross the light speed horizon after zeq and the photon density perturbation
goes away, the matter density perturbation still grows like δ ∝ a (see §18.2).

But if a perturbation has a scale that is equal to c/H before zeq, then after the photon
density perturbation has streamed away, the matter density perturbation does not grow until
zeq. Thus if a perturbation has a scale that is equal to c/H at zcross > zeq, then it loses a
factor of (zcross/zeq)

2 of growth. Since the power spectrum goes like δ2, we get the final P (k)
is

P (k) = Ak

{

1 zcross < zeq
(

1+zeq

1+zcross

)4

zcross > zeq
(314)

So now we need to evaluate zcross as a function of the scale 1/k. This is done using

a(t)

k
=

1

(1 + z)k
= ct =

c

(1 + z)2

√

3

32πGρr◦
(315)

since we are only interested in times before zeq so we use the radiation dominated formula.
This gives

1 + zcross ∝
√

3

32πGρr◦
ck (316)

so the power spectrum has a 4 unit break in the power law index at the k where zcross = zeq.
The wavenumber at this break, which is the peak of P (k), is given by

kpk ∝ ρm◦

ρr◦
c−1

√

32πGρr◦

3
∝ Ωm◦h

2 (317)

since the radiation density ρr◦ is well known from the CMBR.

When connecting the CMBR to P (k), the simple Sachs-Wolfe formulae only work for
Ωm = 1, because in other cases the gravitational potential φ is a function of time, leading to
what is called the integrated Sachs-Wolfe effect. If φ changes with time, the energy gained
by a photon falling into a potential well is different than the energy it loses climbing out of
the potential well, which creates a ∆T . To avoid considering this effect, we will only consider
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Fig. 32.— CDM power spectrum for h = 0.8, 0.5 and 0.3 from top to bottom. k′ = (c/H◦)k
and P ′ = (H◦/c)

3P .

Ωm = 1. Since the CMBR large scale anisotropy is given by Q2 ∝ Ah4 where P (k) = Ak for
small k, the power spectrum for small scales (large k) is given by

P (k) ∝ Q2

h4
k4

pkk
−3 ∝ Q2h4

k3
(318)

Since the fractional density variance on small scales is determined by k3P (k), we see that
the density contrast is independent of scale (for small enough scales) but the ratio of density
contrast to the CMBR anisotropy Q varies like h2. This turns out to be an oversimplification.
The actual break in P (k) is quite gradual and rounded, and the actual slope of P (k) on scales
relevant to clustering of galaxies is close to P (k) ∝ k−1 or k−2. As a result the ratio of the
CMBR Q to the amplitude of clustering in 8/h Mpc spheres is approximately σ8/Q ∝ h.

The form for the power CDM power spectrum following Peebles (1982, ApJ, 263, L1-L5)
as corrected in Equation 25.22 of Principle of Physical Cosmology is

P (k) =
Ak

(1 + αk + βk2)2
(319)
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Fig. 33.— CDM 2-point correlation function for h = 0.8, 0.5 and 0.3 from top to bottom
at log z = −3. z = H◦r/c, and the straight line is the observed ξ = (cz/500 kms)−1.77. The
curves are dashed for negative ξ.
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with α = 8/(Ωh2) Mpc and β = 4.7/(Ωh2)2 Mpc2. Note that the intersection of the large and
small scale asymptotic branches of this P (k) occurs at kpk = 1/

√

(β) = 0.46 Ωm◦h
2 Mpc−1.

In terms of the dimensionless quantities in Equation 281, this is

P ′(k′) =
12〈Q2〉
5πT 2

◦

k′

(1 + α′[k′/(Ωh)] + β ′[k′/(Ωh)]2)2
(320)

with α′ = αΩh2/3000 = 0.00267 and β ′ = β(Ωh2)2/30002 = 5.22 × 10−7. The parameter
combination Ωh that controls the shape of P ′ is often called Γ, and the best fits to obser-
vations of large scale structure suggest that Γ ≈ 0.3 If we calculate the correlation function
using P ′, it naturally comes out in redshift units:

ξ(z) = 4π

∫

k′ 2P ′(k′)
sin(k′z)

k′z
dk′

= 4π
12〈Q2〉
5πT 2

◦
Γ4

∫

κ3

(1 + α′κ+ β ′κ2)2

sin(κΓz)

κΓz
dκ

= 4π
12〈Q2〉
5πT 2

◦
Γ4F (Γz) (321)

with k′ = κΓ and

F (x) =

∫

κ3

(1 + α′κ+ β ′κ2)2

sin(κx)

κx
dκ (322)

Observations suggest that ξ(r) = 1 for r = 5h−1 Mpc or that ξ(z) = 1 for z = 0.00167,
and that ξ(r) ∝ r−1.77. We note that F (x) ∝ x−1.77 for x ≈ 0.0005 = 0.3 × 0.00167,
indicating that the slope of the correlation function is about right for Γ = 0.3, and that
F (0.0005) ≈ 2.77 × 1011. This gives ξ(z) = 0.94 at z = 0.00167 if Γ = 0.3. So if H◦ were
equal to 30 km/sec/Mpc, then both the amplitude of the clustering and the location of the
peak of P ′(k′) would agree with observations. This is the Super-Sandage model. But since
H◦ appears to be 71 km/sec/Mpc, the amplitude of small scale perturbations appears to be
too high, and the peak of P ′(k′) appears to occur at too small a scale. Both problems could
be solved by lowering kpk which requires lowering Ωm◦ if h is fixed. So an open Universe
with Ω = 0.3 and a flat vacuum-dominated ΛCDM model with Ωm◦ = 0.3 and Ωv◦ = 0.7
were proposed as variants of the standard CDM model at the time of the COBE anisotropy
results in 1992. Finally, a mixed dark matter model with about 25% of the dark matter being
massive neutrinos has been proposed. The neutrinos free stream out of density perturbations
and thus lower the small scale density contrast for a given Q. Currently the ΛCDM is the
accepted concordance model.
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Fig. 34.— The photon & cold dark matter density perturbations ∆γ & ∆c for five different
scales κ = 5, 10, 20, 40 & 80 from bottom to top at the left.

19. Two Fluid Approximation

The section is based on the two fluid approximation described by Seljak (1994, astro-
ph/9406050) in which the baryons and photons are treated as a tightly coupled fluid with
pressure, while the cold dark matter is treated as a pressureless fluid. The two fluids interact
only gravitationally. Let η be the conformal time, dη = dt/a where a(t) is the scale factor
normalized to unity at the current time, t◦. Let η◦ be the current conformal time. Working
in the Newtonian gauge gives the temperature fluctuation in direction n̂ as

∆T (n̂)

T◦
=

∫ η0

0

[τ̇ (φ+
δγ
4

+ n̂ · ~vb) + 2φ̇]e−τdη. (323)

Here φ is the gravitational potential, δγ is the photon density perturbation and ~vb is the elec-
tron velocity. Note that the temperature fluctuation is 1/4 of the photon density fluctuation.
τ is the Thomson scattering optical depth along the line-of-sight, given by dτ = aneσTdη. In
the limit of an infinitely thin LSS τ̇ e−τ reduces to a Dirac δ-function at ηrec, the conformal
time at recombination. Equation 323 then reduces to

∆T (n̂)

T◦
= φ(ηrec) +

δγ(ηrec)

4
+ n̂ · ~vb(ηrec) + 2

∫ η◦

ηrec

φ̇(η)dη. (324)
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The resulting angular power spectrum is given by

Cℓ = 4π

∫ ∞

0

k2Pφ(k)T (k)D2
ℓdk

Dℓ = (φ+
δγ
4

)jℓ(kη◦ − kηrec) + vbj
′
ℓ(kη◦ − kηrec)

+ 2

∫ η◦

ηrec

jℓ(kη◦ − kη)Ḟ (η)dη, (325)

where jℓ is the spherical Bessel functions and j′ℓ its derivative. The perturbed quantities are
evaluated in k-space at ηrec. Pφ(k) denotes the primordial power spectrum of the potential φ,
usually expressed as a power law Pφ(k) ∝ kn−4. The function T (k) incorporates the damping
effects due to the thickness of the LSS.

The photon evolution equations in k-space are given by

δ̇γ = −4

3
kvγ + 4φ̇, v̇γ =

kδγ
4

+ τ̇ (vb − vγ) + kφ. (326)

The baryon and CDM perturbations follow:

δ̇b = −kvb + 3φ̇, v̇b = − ȧ
a
vb +

4ρ̄γ

3ρ̄b
τ̇(vγ − vb) + kφ

δ̇c = −kvc + 3φ̇, v̇c = − ȧ
a
vc + kφ, (327)

The energy and momentum constraint equations give the equations for φ and φ̇:

φ = −4πGa2

k2
(ρ+

3ȧf

ak
)

φ̇ = − ȧ
a
φ+

4πGa2f

k
, (328)

where ρ = (ρ̄γ + ρ̄ν)δγ + ρ̄bδb + ρ̄cδc and f = 4
3
(ρ̄γ + ρ̄ν)vγ + ρ̄bvb + ρ̄cvc. Here ρ̄ν and ρ̄c are

the neutrino and CDM mean densities, respectively. Seljak replaced neutrino density and
velocity perturbations with the corresponding photon perturbations. This becomes invalid
on small scales due to the free-streaming of neutrinos, but does not affect significantly the
final results. Seljak also neglected the anisotropic shear and possible curvature terms.

The above equations are supplemented by the Friedmann equation, which at early times
(when a possible cosmological constant or curvature term can be neglected) is given by

(

ȧ

a

)2

=
8πGa2

3
(ρ̄γ + ρ̄ν + ρ̄b + ρ̄c). (329)

The solution to this equation is

y ≡ a

aeq

= (αx)2 + 2αx, x =

(

Ωm

arec

)1/2
H0τ

2
≡ η

ηrec

, (330)
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Fig. 35.— Plot of the potential perturbation φ, the apparent temperature perturbation
δ = φ + δγ/4, and the velocity perturbation v at the LSS as a function of the wavenumber
of perturbation κ. The first Doppler peak corresponds to the large negative peak in δ at
κ = 6.4, which gives ℓ ≈ κ

√
1 + zrec = 200 on the sky.

where aeq = (ρ̄γ + ρ̄ν)/(ρ̄b + ρ̄c) ≈ 4.2 × 10−5Ω−1
m h−2 (assuming three flavors of massless

neutrinos), a−1
rec ≈ 1100 for the standard recombination, α2 ≡ arec/aeq, Ωm = Ωb + Ωc is

the value of matter density today in units of critical density and h is the value of Hubble
constant today in units of 100 km/s/Mpc.

Assuming the tight coupling limit τ ≫ 1, which is a good approximation on scales
larger than the Silk damping scale, couples the photons and baryons into a single fluid with
δb = 3

4
δγ and vb = vγ. The above equations rewritten in terms of dimensionless time x and

dimensionless wavevector κ = kηrec become

δ̇c = −κvc + 3φ̇

v̇c = −ζvc + κφ

δ̇γ = −4

3
κvγ + 4φ̇

v̇γ = (
4

3
+ yb)

−1

[

−ζybvγ +
κδγ
3

+ κφ(
4

3
+ yb)

]

φ = −3

2
(ζ/κ)2(δ + 3ζv/κ)
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Fig. 36.— Potential perturbation φ at recombination vs. wavenumber κ, compared to Pee-
bles’ approximation to the CDM transfer function in red.

φ̇ = −ζφ+
3ζ2v

2κ

δ =
δγ [1 + 3

4
(y − yc)] + ycδc

1 + y

v =
vγ(

4
3

+ y − yc) + ycvc

1 + y
(331)

where the derivatives are taken with respect to x,

yb ≡
ρ̄b

ρ̄γ

= [1 +
3 × 7

8
(

4

11
)4/3]

Ωb

Ωm

y = 1.68
Ωb

Ωm

y,

yc =
Ωc

Ωm
y = (1 − Ωb

Ωm
/1.68)y

and “Hubble” parameter with respect to x, ζ = d ln[a]/dx = 2α(αx+ 1)/(α2x2 + 2αx).

Note that y is the ratio of matter density to radiation density, yc is the ratio of cold dark
matter density to radiation density, but yb is the ratio of baryon density to photon density
which enters into the sound speed.
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The initial conditions at x << 1 (when the universe is radiation dominated) and κζ <<
1 (when the mode is larger than the Hubble sphere radius) are φ = 1 so that Pφ(k) in
Eqn(325) is the only place where the actual perturbation amplitude is specified, and δγ ≈
−2φ. The latter arises because the positive φ causes clocks to run fast, and the expansion
of the Universe in the radiation-dominated initial condition goes like proper time to the 1/2
power, so the temperature perturbation is −φ/2 leading to δγ ≈ −2φ. However, a small
additional density perturbation is needed to give the true density deficit needed to drive a
positive potential perturbation. This gives:

φ = 1

δγ = −2φ(1 +
3y

16
)

δc =
3

4
δγ

vγ = vc = −κ
ζ

[

δγ
4

+
2κ2(1 + y)φ

9ζ2(4
3

+ y)

]

. (332)

In order to keep track of the real, as opposed to the gauge induced, density perturbations
we also need

∆a

a
= H

∫

φdt =
ζ

y

∫

φydx. (333)

Then the real density perturbations are given by:

∆c = δc + 3
∆a

a

∆γ = δγ + 4
∆a

a
(334)

These equations need to be evolved until xrec = [(α2 + 1)1/2 − 1]/α ≈ 1. The time
evolution of these quantities is plotted in Figure 34 for κ = 5, 10, 20, 40&80 in a model with
Ωm = 0.3, h = 0.65 and Ωb = 0.05. The vacuum energy density Ωv is irrelevant because the
vacuum energy density is negligible prior to recombination.

The terms that contribute to the CMB anisotropy are the apparent temperature per-
turbation φ+ δγ and the velocity v at the LSS. These are plotted along with φ as a function
of κ at xrec in Figure 35.

The potential perturbation surviving to recombination is a good proxy for the matter
transfer function. Figure 36 shows this potential compared to Peebles’ (1 + αk + βk2)−2

approximation to the transfer function.

The temperature anisotropy expressed with the dimensionless variables is given by

Cl = 4πA

∫ ∞

0

κnT (κ)
[(

φ+
δγ
4

+ 2∆φ)
)

jℓ(κx◦)

+ vγj
′
ℓ(κx◦)

]2

d lnκ, (335)
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where x◦ is the angular distance to the LSS in units of ηrec and the potential power spectrum is
assumed to be Pφ(k) = Ak−3κn−1. The term ∆φ = [2−8/y(xrec)+16xrec/y

3(xrec)]/10y(xrec)
arises from the ISW effect due to the potential varying with time during the transition
period from the radiation dominated to the matter dominated universe. With Ωm = 0.3 and
h = 0.65, y(xrec) = 2.74 and xrec = 0.564 and ∆φ = −0.02.

Note that the spherical Bessel functions jℓ(x) are asymptotically ∝ sin(x− ℓπ/2)/x so
if nothng is varying too rapidy then the integrand for Cℓ is just ∝ [(φ+ δγ

4
+ 2∆φ)2 + v2

γ] if

one averages over a band of ∆ℓ = 4. Since φ+ δγ

4
and vγ are varying like sine and cosine of

some angle for large κ, one would get anisotropy but not oscillations at large ℓ without the
∆φ term.
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Fig. 37.— The two-point correlation function of galaxies, ξ(s), scaled by s2 flatten the large
variation as s−1.77, as measured by Eisenstein et al. (2005). The secondary peak due to
the baryon acoustic oscillations can be seen at 105h−1 Mpc or a Hubble velocity of 10,500
km/sec.

20. Acoustic Scale

The wiggles in the potential perturbation seen in Fig 36 are evenly spaced in k, and
lead to a spike in the two point correlation function of galaxies at a separation given by
the distance sound can travel in the baryon-photon fluid before recombination. This spike
has been observed by Eisenstein et al. (2005, ApJ, 633, 560), and data from this paper are
plotted in Figure 37.

The radiation density, just in photons, is aT 4/c2. It contributes ωr = Ωrh
2 = 2.4705 ×

10−5 for T◦ = 2.725. The pressure is P = aT 4/3. The sound speed is given by

c2s =
∂P

∂ρ
=
∂P/∂ lnT

∂ρ/∂ lnT

=
4aT 4/3

3ρb + 4aT 4/c2
=

c2

3(1 + 0.75ρbc2/aT 4)
(336)

Now ρb can be obtained from ωb = Ωbh
2 = 0.02226 with an error of 1% from the Planck

2015 XIII (arxiv:1502.01589) TT+low P+lensing parameters Then the ratio of ρbc
2 to aT 4
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is 901 now. Thus the sound speed is given by

cs =
c

√

3(1 + 676/(1 + z))
(337)

The baryons will be entrained in acoustic oscillations as long as there is enough photon-
electron scattering to drag the baryons along with the photons. Define zd, the “drag redshift”,
at the time when the baryons are on average free of the Compton drag from the photons.
This zd is close to the redshift of last scattering zLS, but slightly smaller because each electron
has to scatter many photons at zLS since the photon to baryon ratio is so large. Eisenstein
& Hu (1998, astro-ph/9709112) give a fitting formula for zd as

zd =
1291(Ωmh

2)0.251

1 + 0.659(Ωmh2)0.828
[1 + b1(Ωbh

2)b2 ]

b1 = 0.313(Ωmh
2)−0.419[1 + 0.607(Ωmh

2)0.674]

b2 = 0.238(Ωmh
2)0.223. (338)

(339)

For the Planck 2015 XIII (arxiv:1502.01589) TT+low P+lensing parameters, zLS = 1089.94±
0.42 and zd = 1059.57 ± 0.47, so zd is only 3% lower than zLS.

The comoving distance sound can travel before zd is given by

Ds =
c

H◦

∫ 1/(1+zd)

0

da

a
√

3(1 + 676a)X
(340)

with the usual
X = Ωm◦/a+ Ωv◦a

2 + Ωr◦/a
2 + (1 − Ωm◦ − Ωv◦ − Ωr◦).

As a first order approximation, the speed of sound is cs = c/
√

3 and the Universe is
matter-dominated during the relevant epochs, in which case the redshift associated with the
acoustic scale is

DsH◦/c =
2

√

3(1 + zd)Ωm◦
(341)

Thus a measurement of the Hubble velocity associated with the acoustic scale is nearly a
direct measure of Ωm◦. The data of Eisenstein et al. are actually a combination of angular
and radial separations, and the angular size distance to the mean redshift 〈z〉 = 0.35 depends
slightly on Ωv◦.

And with the current values of the cosmological parameters the dependence of Ds is
somehwat more complicated. The speed of sound is about 20% less than c/

√
3 at zLS and

the radiation density is 34% of the matter density. These corrections both make Ds smaller.

Numerically evaluating the integral for Ds in models based on the first WMAP results
gives
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w_b w_c W_v W_m H_o H*D_s/c H*R_LS/c ell_a

0.0224 0.1130 0.73 0.27 70.8 0.03460 3.3330 302.65

0.0234 0.1120 0.73 0.27 70.8 0.03445 3.3330 303.95

0.0224 0.2276 0.00 1.00 50.0 0.02070 1.9396 294.40

0.0224 0.1130 0.00 1.28 32.5 0.01589 1.5319 302.87

where w b is Ωbh
2 and W v is Ωv.

An observable effect is H◦Ds which is the radial velocity separation at zero redshift.
This is 10,373 km/sec for the WMAP concordance model, and 6206 km/sec for the sCDM
model with H◦ = 50. The super-Sandage model which is closed with Ωtot = 1.28 gives 4763
km/sec. The Eisenstein et al. data show the secondary peak at 10,500 km/sec, so the high
Ωm sCDM and super-Sandage models are ruled out.

The angular scale associated with the acoustic scale on the CMB sky is also well mea-
sured. It is rather similar for these models tabulated above. The angular acoustic scale is
given by ℓa which is the spacing between the peaks in the CMB angular power spectrum,
and its value is

ℓa = π
RLS

Ds

where RLS = (1 + zLS)DA(zLS) (342)

where Ds should be evaluated at zLS when dealing with the CMB. The π allows for one-half
wavelength in the sound wave corresponding to the peak spacing.

Since DA depends on an integral over all the time since recombination, ℓa is much more
affected by the vacuum energy density than was H◦Ds. As a result determination of both
ℓa by the CMB observations and H◦Ds using the galaxy correlation function produces tight
constraints on the cosmological parameters. These are shown in Figure 38 which is computed
for one particular set of values for the physical baryon and dark matter density, but these
parameters are well constrained by the amplitudes of the peaks in the CMB power spectrum.

The super-Sandage model is adjusted to make ℓa the same as for the WMAP concordance
model, while the Einstein-de Sitter model gives ℓa only 3% lower. But the CMB acoustic
peak spacing is known to 0.04% accuracy, so this is a signficant error.
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Fig. 38.— Constraints on cosmological parameters from the peak spacing the CMB power
spectrum, and from the secondary peak in galaxy correlation function (BAO). The inter-
section defines a flat accelerating Universe that is also consistent with the supernova data.
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21. Press-Schechter Method
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Fig. 39.— Density contrast of a spherical overdense region in a critical density Universe.

Non-linear growth of perturbations is hard to follow analytically. But there is a simple
model that does a remarkably good job. This is the Press-Schechter method. The basic
idea is that a spherical symmetric overdense region will reach a maximum radius, and then
collapse almost to a point. When the region is at maximum radius, its kinetic energy is zero
and thus too small for a system in virial equilibrium. When it collapses to nearly zero radius,
the potential energy is much bigger in magnitude than it was at maximum radius, and thus
the kinetic energy is essentially equal to the magnitude of the potential energy. This is now
a factor of two too large for virial equilibrium If the system rebounds to a radius that is
twice the radius at maximum expansion, the kinetic energy is one half the magnitude of the
potential energy as desired by the virial theorem.

The density perturbations can be described by a function

δ(~x, t) =
ρ(~x, t)

ρ(t)
− 1 (343)
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Fig. 40.— A space-time diagram showing a spherical overdense region collapsing and virial-
izing.

As long as the conditions Ωm ≈ 1 and cst < L/(1 + z) are met, δ grows at the same rate
as the scale factor for the Universe, so δ ∝ t2/3. This can be seen in Figure 39. However,
overdense regions will eventually stop expanding and recollapse, as seen in Figure 40. As
the density increases, gravitational forces get larger, leading to a nonlinear enhancement of
the density contrast. Eventually the overdense region collapses – to a point for a perfectly
symmetric and homogeneous overdensity – but in general to a virialized cluster. At the point
of maximum expansion, the overdensity has zero kinetic energy. In order to satisfy the virial
theorem, with −PE = 2KE, the virialized cluster has to have a radius that is one-half of the
radius at maximum expansion. The condition that L/(1 + z) >> cst means that pressure
gradients are unimportant in the evolution of the overdense region, so the equations for a
homogeneous Universe apply, giving

r =
rmax

2
(1 − cos η) t =

tc
2π

(η − sin η) (344)

For small η this reduces to

R =
rmax

4

(

12π

tc

)2/3

t2/3 (345)

and this applies exactly to the inner boundary of the unperturbed region. At the collapse
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time, the ratio of the virialized radius rvir = rmax/2 to the radius of the unperturbed region
is a fixed value, and its cube gives the post-virialization density contrast

ρvir

〈ρ(tc)〉
=

(

R(tc)

rvir

)3

= 18π2 = 177.7 (346)

Once a region has collapsed, its density remains fixed, but the density of the Universe
continues to decline so the density contrast increases like the cube of the scale factor.

Press & Schechter (1976) pointed out that the linearly extrapolated density contrast
(the red line in Figure 39) has a fixed value at tc. The density contrast at any time prior to
the collapse can be found by noting that the density in the overdense region goes like r−3

while the density in the unperturbed region goes like t−2. Thus

δ(t) = 4.5
(η − sin η)2

(1 − cos η)3
− 1 ≈ 3

20
η2 + . . . ≈ 3

20

(

12πt

tc

)2/3

+ . . . (347)

At the collapse time this gives the critical density contrast δc = 0.15(12π)2/3 = 1.68647.
These results are exact for spherically symmetric, homogeneous overdense regions embedded
in a critical density Universe. Press & Schechter generalized this to say that whenever the
linearly extrapolated density contrast averaged over a spherical region exceeds δc, then that
region will have collapsed.

Note that the gravitational potential perturbation is constant as a function of time both
before collapse in the linear region with t << tc and after collapse in the region with t >> tc,
but the two constants differ by a factor of 10/3, so the non-linear collapse and virialization
make the potential well of the overdense region deeper.

One is now left with the simpler problem of identifying regions with a spherically aver-
aged linearly extrapolated overdensity that is larger than δc. This can be done by convolving
the density field with a spherical top-hat smoothing function that is constant for r < R and
zero for r > R. Like most convolution problems, this one becomes much simpler in the
Fourier domain. The Fourier transform of the spherical top-hat, or its window function, is
given by

WR(k) = (4πR3/3)−1

∫

r<R

exp(i~k · ~x)d3~x

=
3[sin(kR) − kR cos(kR)]

(kR)3
≈ 1 − (kR)2

10
+ . . . (348)

The Fourier transform of the density fluctuation is defined by

δ(~r) =
∆ρ

ρ
=

(2π)3/2

V
1/2
u

∑

δke
i~k·~r (349)

where Vu is a box used for discretizing and normalizing the Fourier transforms. Since the
density of terms in the sum is proportional to Vu the relationship between the variance of
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Fig. 41.— The relative density fluctuations within spheres of radius R for Ω = CDM models
with H◦ = 25 (solid), 50 (dashed) and 100 (dotted) at the current time (black) and at z = 9
(gray). The horizontal dashed line shows the critical overdensity for collapse, δc, while the
vertical dashed line shows 8h−1 Mpc.

δ(~r) and the variance of δk is not changed as Vu is changed. The variance of δk is the power

spectrum:
P (k) =

〈

|δk|2
〉

(350)

Since δk has units of Length3/2, the power spectrum has units of volume. It is convenient to
make the power spectrum dimensionless by dividing by the Hubble volume, and to measure
the wavevector k in units of radians per Hubble radius. This gives P ′(k′) = (H◦/c)

3P (k)
with k′ = ck/H◦. For critical density CDM models, the power spectrum is given by Peebles
(1982):

P ′(k′) =
12〈Q2〉
5πT 2

◦

k′

(1 + α′[k′/(Ωh)] + β ′[k′/(Ωh)]2)2
(351)

where Q is the CMB RMS quadrupole (18 ± 1.6 µK, Bennett et al. 1996), α′ = 0.00267
and β ′ = 5.22× 10−7. For open or vacuum-dominated models the normalization in terms of
the CMB changes due to the integrated Sachs-Wolfe effect, but the shape of the spectrum
still depends only on the parameter Ωh, where h is the Hubble constant in units of 100
km/sec/Mpc. In Mixed Dark Matter (MDM) models the shape of the high-k cutoff is
changed, and for Hot Dark Matter the high-k cutoff is much sharper. The variance within a
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spherical top-hat smoothing filter of radius R specified in h−1 Mpc, is given by

σ2
R = 4π

∫

k′
2
P ′(k′)

[

3[sin(x) − x cos(x)]

x3

]2

dk′ (352)

with x = k′R/3000. Note that for P (k) ∝ k−1.23, which is approximately right near R ≈
8h−1 Mpc, the effective wavenumber for σR is given by keffR ≈ 1.44 so the effective ℓ for
σ8 is about 1800 for ΛCDM with RLSS ≈ 104h−1 Mpc. Figure 41 shows σ vs. R for several
different critical density CDM models. A CDM model with H◦ ≈ 30 is consistent with
all current CMB and large-scale structure data, but is not consistent with determinations
of H◦, Ω from dynamics, or q◦ from supernovae. Also, while the solid black curve gives
approximately the correct σ8 now, the gray curve which shows σR at z = 9 is always well
below δc, so very little structure would form at very high redshifts. But any model with the
same value of Ωh gives the same shape for σ vs. R, so a vacuum-dominated model with
H◦ = 65 and Ω = 0.4 is a good fit.

One way to have more structure at higher redshifts while maintaining the same level of
current structure is to reduce the late time growth of perturbations. The growing mode is
given by (Peebles 1993)

D(t) =

√
X

a

∫

X−3/2da (353)

where a = (1+ z)−1 and X = Ωm/a+ Ωr/a
2 + Ωva

2 + Ωk. Here Ωm is the density parameter
for ordinary matter, usually just called Ω, and Ωv is the vacuum density divided by the
critical density, often denoted λ. Ωk, the “curvature Ω”, is Ωk = 1 − (Ωm + Ωr + Ωv).

The growth function can be derived by varying Ωk, which represents the total energy,
in the integral for the time since the Big Bang, giving

δt = δ

(∫

da

H◦
√
X

)

= −0.5H−1
◦

∫

X−3/2da (354)

which must be canceled by changing the final scale factor giving H◦δt = X−1/2da. This gives
a density perturbation proportional to da/a ∝ (

√
X/a)

∫

X−3/2da.

For Ωm = 1, Ωv = 0 this function is just D(t) ∝ a(t), but for a vacuum-dominated
model with Ωm = 0.25, Ωv = 0.75 the growth rate slows down for z < 1. This slower growth,
combined with a normalization to σ8 now, leads to larger density contrast at z = 9. For
an open model with ωm = 0.25 and Ωv = 0 the effect is even larger, since growth slows for
z < 3, as shown in Figure 42. The slowdown in the growth rate of perturbations in low Ω
models may be the cause of the decline in the Madau curve between z = 1.5 and the present.

The Press-Schechter method is normally applied to the computation of the mass function
of collapsed and virialized objects. The mass M defines a comoving smoothing radius via
M = (4π/3)ρ◦R

3. The fraction of the matter that is in collapsed objects of mass M or
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Fig. 42.— The growing mode vs. redshift for Ωm = 1 (solid), Ωm = 0.25, Ωv = 0.75
(dashed), and Ωm = 0.25, Ωv = 0 (dotted).

greater is

P (> M) = (2π)−0.5

∫ ∞

δc/σR

exp(−0.5x2)dx (355)

Thus the comoving differential mass function of objects is given by

n(M) =
ρ◦
M

∣

∣

∣

∣

∂P

∂M

∣

∣

∣

∣

(356)
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22. Cluster of Galaxies

Masses of clusters of galaxies can be measured many ways. The mass of baryons can
be measured because all of the baryons are visible in clusters of galaxies: the stars in the
galaxies plus the hot gas in the intracluster medium can both be observed. To observe the
hot gas one uses X-ray observations. Here one observes an angular size θ and an X-ray flux
FX and electron temperature Te. The distance of the cluster is given by D = cz/H◦. The
X-ray flux is given by

FX ∝ (θD)3n2
e

√
Te

D2
(357)

We can solve this for
ne ∝ F

1/2
X D−1/2T−1/4

e θ−3/2 (358)

and then compute the baryonic mass

Mb ∝ ne(θD)3 ∝ F
1/2
X D5/2T−1/4

e θ3/2 (359)

In most analyses to date, the electron density is assumed to follow an isothermal β-model,
with

ne(r) = ne(0)

(

1 +
r2

r2
c

)−3β/2

. (360)

This is a fairly crude approximation, and it is definitely not the gas density that would result
in hydrostatic equilibrium in a Navarro, White & Frenk (1997, ApJ, 490, 493-508) density
profile for the dark matter. The NFW profile is

ρ(r) =
δcρcrit

(r/rs)(1 + r/rs)2
(361)

with a concentration parameter c given by c = r200/rs and δc = 200c3/{3[ln(1+c)−c/(1+c)]}.
Here rs is the radius at which the density variation changes from a r−1 dependence to a
r−3 dependence. In this density law the enclosed mass varies like r2 for small r, so the
gravitational acceleration g is constant. The potential then is shaped like a conical pit,
and the density of isothermal gas in hydrostatic equilibirum would also show a conical peak
instead of a smooth quadratic variation with radius r. Inaccuracies like this have in the
past led to factor of two discrepancies among various cluster mass determinations but more
careful analyses have reduced these problems.

The X-ray data can also be used to compute the total mass of the cluster. Hydrostatic
equilibrium says that dP/dr = −ρg which gives

nekTe

θD
∝ neµGMt

(θD)2
(362)

where µ is the mass per electron. This determines the total mass

Mt ∝
(kTe/µ)θD

G
(363)
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Then the baryon fraction is given by Mb/Mt or

fb ∝ F
1/2
X D3/2θ1/2T−5/4

e . (364)

LaRoque, Bonamente, Carlstrom, Joy, Nagai, Reese1 & Dawson (2006, ApJ, 652, 917-936)
find the X-ray determined baryon fraction is fb = 0.119(70/H◦)

3/2.

The Sunyaev-Zel’dovich effect allows one to measure y = τekTe/mec
2. This gives another

way to solve for ne:

ne ∝
y

TeθD
. (365)

and

Mb ∝ ne(θD)3 ∝= y1T−1
e (θD)2. (366)

Finally

fb ∝ y1T−2
e θ1D1. (367)

LaRoque et al. find the S-Z effect gives fb = 0.121(70/H◦). Note that these values are
determined for the volume inside r2500, where r2500 is defined as the radius within which
the mean density is ρ = 2500 × ρcrit. Recall that in the Press-Schechter model a cluster is
virialized when ρ = 177 × ρcrit so this is just the dense central core. Within this core fb is
only 0.68 ± 0.10 times the cosmic Ωb/Ωm from the CMB.

With two ways to find ne that scale differently with distance D, one can find D by
requiring consistency:

ne ∝ y1T−1
e θ−1D−1

∝ F
1/2
X D−1/2T−1/4

e θ−3/2

D ∝ y2F−1
X T−3/2

e θ. (368)

Given the distance and the redshift one can find the Hubble constant from the S-Z effect data,
and Bonamente, Joy, LaRoque, Carlstrom, Reese & Dawson (astro-ph/0512349) determine
H◦ = 77 ± 10 km/sec/Mpc.

The ESA mission Planck, launched in 2009, has provided a catalog of 1653 S-Z sources
of which 1203 are confirmed clusters (arxiv:1502.01598).

One of the most useful methods for obtaining masses of systems is the Virial Theorem.
This states that the total kinetic energy of a bound system is minus one-half of the total
potential energy:

KE = −1

2
PE (369)

1UCLA undergrad
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Fig. 43.— A schematic cluster with strip counts, background subtracted strip counts, and
Re computed using Eqn(405) shown by the circle.

Remember that the potential energy of a bound system is negative so the minus sign gives
a positive kinetic energy. This gives

(3/2)Mtσ
2 ∝ (1/2)

GM2
t

Re

(370)

where σ is the radial velocity dispersion and Re is the effective radius that gives PE =
−GM2/Re. This assumes an isotropic velocity distribution, so 〈v2〉 = 3σ2. Therefore

Mt =
3σ2θeD

G
. (371)

This is equivalent to the total mass equation from X-ray data with σ2 ∝ kTe/µ.

Note that the effective radius Re is quite large. For a cluster with a Gaussian profile,
Re is

√

2π/ ln 2 = 3.01 times the half-density radius.

For the Plummer model with ρ ∝ [1+(r/b)2]−5/2 the effective radius is Re = (32/3π)b =
3.395b. In this model the half-density radius is 0.565b, so Re is 6.01 times the half-density
radius. Fig. 43 shows how Re is considerably bigger than the half-density radius of a cluster.
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Fig. 44.— Definitions of the apparent position θ, the deflection β, and the undeflected
positions φ.

Gravitational lensing also provides a way to measure masses. The deflection of light
passing by a mass at impact parameter b is given by β = 4GM/bc2. If the deflections are
small, then it is not important where the mass is along the line of sight, so the mass of a
cluster can be collapsed into a sheet, giving a surface mass density Σ(x, y). This is the thin

lens approximation and it is very accurate for clusters of galaxies.

The deflection produced by a uniform ring of mass vanishes for a light ray passing
through the ring. The closer distance to the near side of the ring is exactly canceled by the
greater amount of mass on the far side of the ring. In addition, for a ray passing outside
the ring the deflection is the same as it would be for all the mass collapsed to a point in the
center. Thus if the mass distribution collapsed into a sheet is circularly symmetric, one gets
an exact formula for the mass enclosed within a cylinder of radius b around the line of sight:

M(< b) =
β(b)bc2

4G
(372)

The deflection β occurs at the lens and is not the same as the image displacement observed at
the Earth. The impact parameter b is clearly given by b = DA(zL)θ where θ is the observed
angular separation between the lens and the apparent position of the source. I will use
DLens as a shorthand for the angular size distance to the lens, DA(zL). The actual radius of
the source at the source plane is given by DSθ − β(DLensθ)DLS, or an undeflected angular
position of φ = θ − β(DLensθ)DLS/DS, where DS = DA(zS) is the angular size distance
to the source, and DLS is the angular size distance of source seen from the lens. This is
computable from the usual formulae for DLens and DS using

DLS = [R◦/(1 + zS)]S[S−1([1 + zS]DS/R◦) − S−1([1 + zL]DLens/R◦)], (373)

where S() = sin() for closed Universes with k = 1 or S() = sinh() for open Universes with
k = −1, and R◦ = (c/H◦)/

√

|1 − Ωtot|. This can also be written as

DLS =
R◦

1 + zS
S

(

∫ 1/(1+zL)

1/(1+zS )

cda

R◦aȧ

)

. (374)
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In non-flat Universes DS 6= DLens + DLS. This violation of Euclidean triangle rules can be
used to measure the curvature of space, even with the very long skinny triangles involved in
lensing. Figure 44 shows the definitions of these angles.

For a given lens and source redshift there is an Einstein ring radius θE such that the
actual source position is on-axis when the apparent position is at θE . This is found by solving

DSθE − β(DLensθE)DLS = 0. (375)

Clearly β = θEDS/DLS for the Einstein ring.

In strong lensing one identifies multiple images of a source which are separated by angles
comparable to θE . Using other data such as flux ratios it is easy to determine θE . Then the
mass contained within a cylinder of radius b = DLensθE is

M(< DLensθE) = βbc2/4G = θ2
E(DLensDS/DLS)c2/4G. (376)

In weak lensing one observes the shapes of background galaxies more distant from the
lens than the Einstein ring radius. The tangential dimension of a background source is
increased by a factor θ/φ, the radial dimension is multiplied by ∂θ/∂φ. But since the
deflection usually decreases for sources more distant from the lens, ∂θ/∂φ is usually less
than one and sources are compressed radially. Thus the average ratio of tangential size to
radial size is greater than one. This ratio is given by 〈a/b〉 = 1 + 2〈γT 〉 where γT is called
the tangential shear. For a point mass lens, φ = θ − θ2

E/θ, so

〈a/b〉 =
θ/φ

∂θ/∂φ

=
θ

θ − θ2
E/θ

dθ + θ2
E/θ

2dθ

dθ

=
1 + θ2

E/θ
2

1 − θ2
E/θ

2
≈ 2θ2

E

θ2
(377)

Thus θ2
E = 〈γT 〉θ2 and

M =
c2

4G

DLensDS

DLS
〈γT 〉θ2 (378)

For a Singular Isothermal Sphere (SIS) lens, with ρ = (σ2/2πG)r−2, where σ is the velocity
dispersion in each axis, the deflection angle is constant since M(< b) ∝ b. Then φ = θ− θE ,
and ∂θ/∂φ = 1, so γT ≈ 0.5θE/θ. In this case

M(< DLensθ) =
c2

8G

DLensDS

DLS
〈γT 〉θ2 (379)

There is a strong correlation between the temperature of the hot gas in X-ray luminous
clusters and the total mass M2500 within a sphere of radius r2500. Hoekstra (arXiv:0705.0358)
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uses weak lensing to find M2500 and gets

M2500 = (1.4 ± 0.2) × 1014h−1M⊙

(

kTe

5 keV

)1.34±0.29

. (380)

Note that since kT ≈ GM/r and (3/4π)M2500/r
3
2500 = 2500ρcrit, we can derive M ∝ r3, and

T ∝ r2, so M ∝ T 3/2 is the expected scaling. The observations are consistent with this
expectation. Also, for H◦ = 71 and kT = 10 keV, the mass is 5 × 1014 M⊙ = 1048 grams,
and ρ = 2.36 × 10−26 gm/cc, giving a radius r2500 = 0.7 Mpc.

A more recent paper using weak lensing is Jee et al. (2011, arXiv:1105.3186) which
studied z > 1 clusters and got

E(z)M2500 = (9.13 ± 0.85) × 1013h−1M⊙

(

kTe

5 keV

)1.54±0.23

(381)

where E(z) is H(z)/H◦, so h−1/E(z) is just the Hubble constant at redshift z scaled by 100
km s−1 Mpc−1. Thus it appears that the normalization of the M vs TX relation evolves with
redshift, but the theoretical expectation that M ∝ T

3/2
X is confirmed.

X-ray clusters analyzed by Mantz et al. (arXiv:0909.3099) gave

log

(

kTce

1 keV

)

= 0.88 ± 0.05 + (0.48 ± 0.04) log

(

E(z)M500

1015 M⊙

)

(382)

and also

log

(

L500

E(z)1044 erg/sec

)

= 0.82 ± 0.11 + (1.29 ± 0.07) log

(

E(z)M500

1015 M⊙

)

(383)

where Tce is a “center-excised” temperature designed to reduce the effect of any cooling cores
in the clusters, and L500 and M500 are the total X-ray luminosity and mass within a sphere
having mean overdensity of 500 relative to the critical density. Note that these fits give
M ∝ T 2 which disagrees with the simple theoretical scaling.

The quantity YX ∝ MgasTe is often used in scaling relations. It is the total thermal
energy of a cluster. It is directly related to the Sunyaev-Zel’dovich “luminosity” of a cluster,
∫

σTne(kTe/mcc
2)dV = D2

A

∫

ydΩ. The Planck mission has a 5′ beam so it will only measure
the S-Z “flux”

∫

ydΩ for most clusters.

Kaiser (1986, MNRAS, 222, 323-345) derived theoretical scaling relations given by

Lbol

E(z)
∝ [E(z)M ]4/3

kTmw ∝ [E(z)M ]2/3

E(z)Y ∝ [E(z)M ]5/3 (384)
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22.1. Proof of Virial Theorem

To prove the virial theorem consider the moment of inertia

I =
∑

mi~r
2
i (385)

If the system has settled into a steady state, then the time-averaged value of the second time
derivative of I will be zero. So

İ =
∑

2mi~ri · ~̇ri (386)

and

Ï =
∑

2mi

(

~̇r
2

i + ~ri · ~̈ri

)

. (387)

Thus

Ï = 4
∑ 1

2
mi~v

2
i + 2

∑

i

mi~ri ·
(

∑

j 6=i

Gmj(~rj − ~ri)

|~rj − ~ri|3

)

. (388)

Now
∑

i

∑

j 6=i

Gmimj~ri · (~rj − ~ri)

|~rj − ~ri|3
=
∑

j

∑

i6=j

Gmimj~rj · (~ri − ~rj)

|~rj − ~ri|3
(389)

because the RHS is obtained by just interchanging the indices i and j, and the names of the
indices don’t matter when they are summed over. But if these two quantities are equal, we
can add them together and divide by two and get the same value again. This gives

∑

i

∑

j 6=i

Gmimj~ri · (~rj − ~ri)

|~rj − ~ri|3
=

1

2

∑

i

∑

j 6=i

Gmimj(~ri − ~rj) · (~rj − ~ri)

|~rj − ~ri|3

= −1

2

∑

i,j 6=i

Gmimj

|~rj − ~ri|
= PE (390)

Thus

Ï = 4(KE) + 2(PE) = 0 (391)

in a steady state. This needs to be taken as a time average, since in many bound systems
such as a elliptical binary the ratio of the instantaneous kinetic energy to the instantaneous
potential energy varies with phase. But the time-averaged values satisfy

〈KE〉 = −1

2
〈PE〉 (392)

Usually we apply the virial theorem to a distant cluster where only radial velocities can
be measured. If the radial velocity dispersion is σ(vr) then the kinetic energy is

KE =
3

2
Mσ(vr)

2 (393)
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where the “3” comes from assuming isotropy in the velocity distribution. The potential
energy is

PE = −GM
2

Re

(394)

where Re, the effective radius, is found from

−1

2

∑

i,j 6=i

Gmimj

|~rj − ~ri|
= PE = −GM

2

Re

(395)

so

1

Re
=

1

2

(

∑

i,j 6=i

(mi/M)(mj/M)

|~rj − ~ri|

)

. (396)

A stable evaluation of the potential energy can be found if a model for the density law
of the cluster, ρ(r), is found. Then

PE = −16π2G

∫ ∞

0

ρ(r)r

(
∫ r

0

ρ(r′)r′2dr′
)

dr (397)

22.2. Observational Evaluation of Re

Peebles in “Physical Cosmology” (the 1971 book, not the later “Principles of Physical
Cosmology”) gives an interesting way to determine Re from strip counts. Let S(δ) be the
count of objects in a strip displaced by δ from the center of the cluster on the sky. This strip
is really a plane in 3-D. Let x and y be coordinates in that plane. Then

S(δ) =

∫ ∫

n(
√

δ2 + x2 + y2)dxdy = 2π

∫ ∞

0

ηn(
√

δ2 + η2)dη (398)

where η =
√

x2 + y2. Now r =
√

δ2 + η2 so rdr = ηdη. Thus

S(δ) = 2π

∫ ∞

δ

rn(r)dr (399)

and
dS

dδ
= −2πδn(δ). (400)

Now let m be the mass of an object and M be the mass of the cluster:

M = 4πm

∫ ∞

0

n(r)r2dr = 2m

∫ ∞

0

S(δ)dδ (401)
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The potential energy is

PE = −16π2Gm2

∫ ∞

0

n(r)r

(
∫ r

0

n(r′)r′2dr′
)

dr

= −4Gm2

∫ ∞

0

dS

dr

(
∫ r

0

r′
dS

dr′
dr′
)

dr (402)

This can be integrated by parts with q = S and p =
∫ r

0
r′(dS/dr′)dr′ giving

PE = 4Gm2

∫ ∞

0

Sr
dS

dr
dr. (403)

Once again integrate by parts with q = S2/2 and p = r, giving

PE = −2Gm2

∫ ∞

0

S2dr (404)

Now

Re = −GM
2

PE
=

4Gm2
[∫∞

0
Sdδ

]2

2Gm2
∫∞
0
S2dδ

=
2
[∫∞

0
Sdδ

]2

∫∞
0
S2dδ

=

[

∫ +∞
−∞ Sdδ

]2

∫ +∞
−∞ S2dδ

(405)

Applying the virial theorem gives

M =
3σ(vr)

2

G

2
[∫∞

0
Sdδ

]2

∫∞
0
S2dδ

(406)

If the strip counts follow

S ∝ 1

δ2 + δ2
◦

(407)

then
∫

S(δ)dδ =
π

2

1

δ◦
∫

S(δ)2dδ =
π

4

1

δ3
◦

Re =
2(π/(2δ◦))

2

π/(4δ3
◦)

= 2πδ◦ (408)
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23. Gravitational Lensing

Gravitational lensing is the bending of light by massive bodies along the line of sight.
In the Newtonian “bullet” model for light, the deflection of a ray passing a mass M with
impact parameter b is given by ∆θ =

∫

a⊥dt/v = c−1
∫

[GMb/(c2t2 + b2)3/2]dt = [2GM/bc2].
For M = M⊙ and b = R⊙, this is 0.87′′. But the full solution to the problem of light passing
a point mass in General Relativity gives an answer that is twice as large:

∆θ =
4GM

bc2
= 1.75′′

M

M⊙

R⊙

b
(409)

Measurement of this bending during the 1919 total solar eclipse made Einstein a worldwide
celebrity. In geometric optics this bending is caused by a time delay, just as the bending of
light by a glass lens is caused by the time delay due to the index of refraction of the glass.
GR gives a time delay for a ray starting and ending at radius r of

∆t =
4GM

c3

[

ln

(

r +
√
r2 − b2

b

)

+

√

r − b

r + b

]

(410)

that creates the observed bending. This time delay was directly observed as the Mars Viking
landers went behind the Sun by a time led by Irwin Shapiro, and is known as the Shapiro
delay.

The deflection due to several masses is given by the sum of the deflections produced by
each mass, and the time delay is the sum of the individual time delays. Usually the bending
of light in gravitational lensing is very small, and the displacement of the light ray from its
original path during its passge through the lensing mass is negligible. In this case we have
a thin lens, and the mass density ρ of the lensing material can be collapsed into a surface
density Σ(x, y) on a plane perpendicular to our line of sight through the lens. Then the
lensing deflection due to the total mass distribution is

~β(~b) = −4G

c2

∫ ∫

Σ(~b′)
~b−~b′

|~b−~b′|2
d2~b′ (411)

Here ~β is a two dimensional angle vector, and ~b is a two dimensional vector in the lensing
plane.

The time delay is proportional to the two dimensional potential ψ derived from the
surface mass density by

∂2ψ

∂x2
+
∂2ψ

∂y2
= 4πGΣ. (412)

Note that ψ is equal to the integral along the line of sight of the ordinary gravitational
potential, and that the time delay is τL = −2ψ/c3.

A source that would normally appear at position ~φ on the sky will actually appear as
an image at position ~θ, which means that the line of sight reaches the source plane offset
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by a physical distance DS(~θ − ~φ), where DS is the angular size distance from the observer

to the source. The deflection of the light ray by an angle ~β produces an offset in the source
plane of DLS

~β where DLS is the angular size distance of the source as seen from the lens,
and this deflection must cancel DS(~θ − ~φ). Finally, the impact parameter in the lens plane

is given by b = DL
~θ where DL is the angular size distance of the lens. Therefore,

~φ = ~θ −DLS
~β(DL

~θ)/DS. (413)

The case where φ is zero is special and corresponds to perfect alignment between the source
and the lens. In this case one gets an Einstein ring at an angular radius θE where

β

b
=

1

FL
=

DS

DLDLS
(414)

where the focal length of the lens FL is usually a strong function of radius so the Einstein
ring only occurs at one radius.

In a flat space-time DL +DLS = DS and

1

FL
=

1

DL
+

1

DLS
(415)

but in cosmological situations one has to use FL = DLDLS/DS.

The angular size distance from the lens to the source is given by

DLS = [R◦/(1 + zS)]S[S−1([1 + zS]DS/R◦) − S−1([1 + zL]DL/R◦)], (416)

where S() = sin() for k = 1 or S() = sinh() for k = −1, and R◦ = (c/H◦)/
√

|1 − Ωtot|. For
the Einstein-de Sitter model with Ωm◦ = 1, the distances are DL = (2c/H◦)((1 + zL)−1 −
(1 + zL)−1.5), DS = (2c/H◦)((1 + zS)−1 − (1 + zS)−1.5), and DLS = (2c/H◦)((1 + zL)−0.5 −
(1 + zS)−0.5)/(1 + zS).

The surface brightness or intensity of an image is not changed by gravitational lensing,
so all of the change in the flux of the images is due to the change in the solid angle of the
image compared to the unlensed source. This gives the magnification matrix M:

M =
∂~θ

∂~φ
=

[

I− DLSDL

DS

∂~β

∂~b

]−1

(417)

The flux magnification is given by the determinant of the magnification matrix:

Fi

F◦
= | det(M)| (418)

Since ~β = ∇τL/c, we can also write the magnification matrix as

M =
∂~θ

∂~φ
=

[

I − DLSDL

DS

(

∂2τL/∂x
2 ∂2τL/∂x∂y

∂2τL/∂x∂y ∂2τL/∂y
2

)]−1

(419)
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Fig. 45.— Left: Source position φ vs. image position θ for a point mass lens. For any source
position there are two images. Right: A singular isothermal sphere lens. There is one image
of distant sources (A and C) but two images of a nearby source (B).

23.1. Symmetric Cases

If the lensing mass is circularly symmetric, then the surface mass density Σ and the
deflection are only functions of radius, r =

√

x2 + y2, and the deflection is always in the

radial direction. This requires that ~θ for all the images and the unlensed position ~φ all be
on a line through the origin of the lens. If we rotate the coordinate system to make this line
the x-axis then we can drop all the vector symbols.

The calculation of the deflection can be simplified for symmetric lenses because the
deflection due to a uniform circular ring of mass vanishes for light rays that pass through
the interior of the ring, and for rays that pass through the lens plane outside the ring the
deflection is the same as that due to a point mass. Therefore the deflection is given by

β(b) =
4GMc(< b)

bc2
(420)

where Mc(< b) is the mass contained within a cylinder of radius b. This mass is projected
into the circle of radius b in the lensing plane.

23.1.1. Point Mass Lens

The point mass lens gives

φ = θ − 4GMDLS

θDLDSc2
(421)

which has the solutions

θ =
φ±

√

φ2 + 4θ2
E

2
(422)

132



θ

φ

A

B

C θ

τ

τL

τG

Fig. 46.— Left: Source position vs. image position for a non singular isothermal sphere. For
a source at position A there is only one image. A source at position B gives three images. A
source at position C is at the caustic, and has infinite magnfication. A lens with maximum
surface density less than the critical surface density [dashed curve] never produces multiple
images. Right: The geometric delay τG, the lensing delay τL, and the total delay for source
position B. The minima and maxima of the total delay are ticked and correspond to the
image positions.

where the Einstein ring radius is given by θE =
√

(4GMDLS)/(DLDSc2). If the source is
directly centered behind the lens, then one gets a complete ring of radius θE for an image.

The magnification matrix for a symmetric lens is given by

M =

(

∂θ/∂φ 0
0 θ/φ

)

(423)

so the flux magnification factor is given by

M =

∣

∣

∣

∣

∂θ

∂φ

θ

φ

∣

∣

∣

∣

=
(1 ± 1/

√

1 + 4θ2
E/φ

2)(1 ±
√

1 + 4θ2
E/φ

2)

4
(424)

If we define u = x◦/rE, then this is

M =

(

1 ±
√

1 + 4/u2
)2

4
√

1 + 4/u2
(425)

Note that two images always exist for a point mass lens, and that the ratio of the flux
magnifications is given by the ratio of the squares of the separations from the lens. When
the lens is far from the line of sight, one image is essentially unmagnified and nearly at the
unlensed position, while the second image in very close to the lens on the opposite side,
and highly demagnified. When the source nearly aligned with the lens, the θ/φ term in the
magnification gets very large and both images are bright.
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In microlensing experiments like MACHO, EROS or OGLE, only the sum of the mag-
nifications of the two images is measured, with a total magnification given by

Mtot =
(1 + 1 + 4/u2)

2
√

1 + 4/u2
=

2 + u2

u
√

4 + u2
(426)

which is a factor of 1.34 when u = 1 and diverges as u → 0. For a lens moving with
constant angular speed in front of a background star, u(t) =

√

u2
min + [2(t− tmin)/t1]2. In

any given event, only umin, tmin and ∆t can be found. For a lens in the Milky Way halo with
DL = 10 kpc, a source in the LMC with DLS = DLMC − DL = 40 kpc so F = 8 kpc, and
M = 0.5M⊙, then the Einstein ring radius is rE = 8.5 × 1013 cm = 5.7 au, and it subtends
an angle of 0.57 milliarcseconds. A lens in the Milky Way halo with a transverse velocity
of 100 km/sec will traverse the Einstein diameter 2rE in t1 = 200 days so a microlensing
event causes a star in the LMC to brighten for several months. The width of the Einstein
ring depends on the lensing mass, so by studying the distribution of event durations the
typical mass can be found to be ≈ 0.5 M⊙. A much firmer mass estimate could be obtained
if the Einstein ring radius were measured directly instead of inferred from the duration
distribution. This can be done by having a telescope in a heliocentric orbit so it is close to
1 au away from the Earth. With two microlensing light curves from separated locations one
can find rE and the transverse velocity. One can also use the change in the Earth’s velocity
during the microlensing event to estimate rE, because the events last for a good fraction of a
year. Thus microlensing is a way of detecting Massive Compact Halo Objects, or MACHOs,
which appear to make up about 50% of the density of the Milky Way halo.

23.1.2. Singular Isothermal Sphere Lens

A simple model for extended symmetric lens is the singular isothermal sphere (SIS),
with velocity dispersion σ2 and density

ρ(r) =
σ2

2πGr2
(427)

While the SIS has infinite mass, its average density equals the critical density at radius
r = 2σ/H. The surface mass density of the SIS is Σ(b) = σ2/(2Gb), and thus the mass
contained within a cylinder of radius b is Mc(< b) = πσ2b/G. Therefore the deflection in the
SIS lens is

β(b) =
4GMc(< b)

bc2
= 4π

(σ

c

)2

(428)

which is a constant, independent of the impact parameter. If |φ| > (DLS/DS)4π(σ/c)2, there
is only one image, with |θ| = |φ| + (DLS/DS)4π(σ/c)2. If |φ| < (DLS/DS)4π(σ/c)2, then
there is another image on the opposite side of the lens with θ = φ − (DLS/DS)4π(σ/c)2.
If the source is perfectly aligned, with φ = 0, then there is an Einstein ring with θE =
(DLS/DS)4π(σ/c)2. For a cluster of galaxies with σ = 103 km/sec, at zL = 7/9, and a
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source at zS = 3 with Ωm◦ = 1, we have DLS = 0.125(c/H◦), DS = 0.25(c/H◦), and the
Einstein ring radius is 14.4′′.

For this mass distribution ∂θ/∂φ = 1, so the magnification is M = |θ/φ|. Thus the
ratio of the magnifications of the two images is given by the ratio of their separations from
the lens.

23.1.3. Non-Singular “Isothermal” Sphere

The density law ρ(r) = ρ◦a
2/(r2 + a2) is often called an isothermal sphere, even though

it is not a solution of the Vlasov equation with an isothermal distribution function. This
model gives

Σ(b) =
πρ◦a

2

√
b2 + a2

Mc(< b) = 2π2ρ◦a
2
(√

b2 + a2 − a
)

β(b) =
8π2Gρ◦a

2

c2

√
b2 + a2 − a

b
(429)

We can find the image position(s) for a lens with this mass distribution graphically, by
plotting the RHS of the equation

φ = θ −DLSβ(DLθ)/DS (430)

vs. θ, as shown in Figure 46. Different source positions φ correspond to different placements
of horizontal lines, and can lead to 1 or 3 intersection with the solid curve, corresponding to
1 or 3 images. In general non-singular lenses always have an odd number of images, so the
two images exhibited by the SIS and point mass lenses are anomalies.

When the source position is at C in the figure, the horizontal line is tangent to the
curve. This leads to ∂θ/∂φ = ∞ and hence infinite magnification for sources on the whole
circle with radius φC . This circle is called a caustic, and caustics occur whenever there is
a change in the number of images. But multiple images can only occur if the slope of the
central part of the curve is negative, and this happens only if

DLSDL

DS

∂β

∂b
=
DLSDL

DS

4πG

c2
Σ(0) > 1 (431)

Thus there is a critical surface mass density for multiple lensing:

Σcrit =
DS

DLSDL

c2

4πG
(432)

If we take DS = DLS = DL = c/H◦ to get a rough order of magnitude estimate for the
cosmologically interesting critical surface density, we get Σcrit = (2/3)ρcrit(c/H◦). Thus we
need to have a surface mass density roughly equal to the critical density times the Hubble
radius in order to get strong lensing with multiple images.
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23.2. Time Delay and H◦

The deflection in a gravitational lens is related to gradient of the time delay through
the lens. The lensing time delay due to the total mass distribution is

τL(~b) = −4G

c3

∫ ∫

Σ(~b′) ln
(

|~b−~b′|
)

d2~b′ (433)

Note that this formula has the problem of putting a dimensionful quantity into the argument
of the ln(), but the only result of this error is to add a constant to the time delay. Only
time delay diffferences are necessary, so it is acceptable to drop the normalization scale that
should go in the logarithm – it should be ln(b/r) where r is the distance of the observer, but
since that distance is essentially constant over the whole lens, there is no point in including
it. There is also a problem of an infinite delay for infinite mass objects like the isothermal
sphere models. But the differences in delays between two points in the lensing plane are
finite. Thus for the singular isothermal sphere model, we can write

τL(~b) = −4π
|~b|
c

σ2

c2
(434)

by integrating the deflection instead of directly evaluating the integral formula. For cosmo-
logical lenses we need to multiply this delay, which is measured at the lens, by (1 + zL) to
allow for the dilation of light curves due to the expansion of the Universe.

The total delay along a ray is the sum of the lensing delay τL and the geometric delay
τG due to the longer path length for a deflected ray. This delay is

τG =
1

2

∣

∣

∣

~θ − ~φ
∣

∣

∣

2 (1 + zL)DLDS

DLSc
(435)

For the simple case of the singular isothermal sphere with two images, |θ − φ| is the same
for both images. Thus the difference in time delays between the two images is given by

τ1 − τ2 =
(1 + zL)DL

c

4πσ2

c2
(|θ2| − |θ1|) =

(1 + zL)DLDS

2DLSc
(|θ2| − |θ1|)(|θ2 − θ1|) (436)

For example, if zL = 0.44 and zS = 1.56, then

τ1 − τ2 = 25h−1 |θ2|2 − |θ1|2
(1′′)2

days. (437)

Note that the brighter image, the one further from the lens center, will have less delay and
thus arrive first. The RHS of Eqn(436) uses the image separation to compute the velocity
dispersion from the lensing equation, and requires knowledge of both zL and zS. The “middle
side” of Eqn(436) requires a spectroscopic velocity dispersion, but the source redshift zS is
not needed. Either version can be used to find the Hubble constant H◦ if the time delay can
be measured.
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Fig. 47.— Light curve for the MACHO event 98-SMC-01, showing the sharp cusps in
magnification produced by caustic crossings.

However, a uniform mass sheet added to the lens model can bias the derived H◦. The
uniform mass sheet introduces a delay proportional to −|b|2, which acts like a convex lens.
This acts to cancel part of the geometric time delay, and increases the image separations. If
not allowed for, these larger separation requires that the distances be smaller, and for known
redshifts this means that H◦ is too big. Thus, the H◦ derived from a lens is an upper limit.
But by measuring both the image separations and the spectroscopic velocity dispersion, one
can measure and correct for the effect of a uniform mass sheet. The velocity dispersion, time
delay and deflection angles of the lensing galaxy in 0957+61 have been measured, giving
H◦ = 70 ± 7 km s−1 Mpc−1 (Tonry & Franx, astro-ph/9809064).

Other lenses have been used to determine H◦: PG1115+080 gives 51+14
−13 kms−1 Mpc−1

(Keeton & Kochanek, astro-ph/9611216) and B0218+357 gives 69+7
−10 kms−1 Mpc−1 (Biggs

et al., astro-ph/9811282). Combining these results gives H◦ = 67 ± 5 km s−1 Mpc−1.
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Fig. 48.— Distortion and magnification of faint blue background galaxies by a foreground
cluster with surface mass desnity shown by the pink shading.

23.3. Asymmetric Lenses

When the lensing mass distribution is not symmetric, then very complicated image
patterns can result. For binary point source lenses, extremely high magnifications on caustic
lines can occur well off the center of the main lensing event. This has led to some spectacular
light curves in the MACHO experiments, as discussed in Alcock et al. (1999, ApJ, TBD,
TBD [astro-ph/9807163]).

23.4. Weak Lensing

Even when the surface mass density is always less than Σcrit, so there are no multiple
images, it is still possible to measure the mass distribution in the lens by studying the
pattern of distortions in the images of numerous faint background galaxies. Because these
galaxies are perceptibly extended, one can measure the second moments of their brightness
distributions. The galaxies will be slightly magnified by an amount which generally cannot
be measured, because their true brightness is unknown. But in general the images will be
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magnified more in one direction than another, and this shear will be the same over extended
regions on the sky. If the background galaxies do not have any intrinsic preferred orientation,
one can measure the shear by taking the average ellipticity of the faint background galaxies.

The magnification matrix is the inverse matrix of the gradient of the deflection with
respect to image position, and the deflection is proportional to the gradient of the time delay.
Since the second derivative of the time delay is a symmetric matrix, the magnification matrix
is symmetric as well. This symmetric 2×2 matrix has three independent components, which
we can take to be the angle of the rotation that diagonalizes the matrix, and then write the
two eigenvalues of the magnification matrix M as (1−κ±γ)−1. The trace, which is the sum
of the eigenvalues, of M−1 gives (1 − κ). Because the trace is also the sum of the diagonal
elements of the matrix, which gives the value of ∂2τL/∂x

2 + ∂2τL/∂y
2 which is proportional

to the surface mass density, we find that κ = Σ/Σcrit. So if we can determine κ we can
determine the surface mass density. But κ usually cannot be determined because we don’t
know the unlensed brightness of the source. However, we can determine ∂2τL/∂x

2−∂2τL/∂y
2

and ∂2τL/∂x∂y from the shear. The gradient of κ is given by

~∇κ ∝ ~∇Σ ∝
(

∂3τL/∂x
3 + ∂3τL/∂y

2∂x
∂3τL/∂x

2∂y + ∂3τL/∂y
3

)

=

(

∂ [∂2τL/∂x
2 − ∂2τL/∂y

2] /∂x+ 2∂ [∂2τL/∂x∂y] /∂y
2∂ [∂3τL/∂x∂y] /∂x− ∂ [∂2τL/∂x

2 − ∂2τL/∂y
2] /∂y

)

(438)

Thus a linear combination of the gradients of the coherent ellipticity produced by the shear
can be used to construct the gradient of the surface mass density and this can be integrated
to determine the mass distribution modulo the uncertainty due to the possibility of adding
a uniform mass sheet.

A very simple example of mass determination using shear would be to find the average
tangential ellipticity of the images on a circle at radius θ around an SIS lens. These images
will be 1 + 2〈γT 〉 = 1 + θE/θ times wider in the tangential direction than in the radial
direction, so this shear measurement determines θE and hence the mass contained within
the circle of radius θ:

Mc(< θ) = πσ2DLθ/G =
c2

8G

DLDS

DLS

〈γT 〉θ2 (439)

For a point mass lens, 〈γT 〉 = θ2
E/θ

2, and the corresponding mass formula is

M =
c2

4G

DLDS

DLS
〈γT 〉θ2 (440)

which is different because the gradient of γ with respect to radius is different in the two
cases. Both formulae can be written as

Mc(< θ) =
c2

8G

DLDS

DLS

∣

∣

∣

∣

∂〈γT 〉
∂θ

∣

∣

∣

∣

θ3 (441)
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Applying these techniques to the cluster MS1224.7+2007 Fahlman et al. (astro-ph/9402017))
obtained a mass to luminosity ratio of M/L = 825h M⊙/L⊙. But Kaiser et al. (astro-
ph/9809268) get M/L = 270h M⊙/L⊙ for the supercluster MS0302+17, and Hoekstra et

al.(astro-ph/9711096) get M/L = 180hM⊙/L⊙ for the cluster Cl 1358+62, so there is not
enough total mass clumped into clusters to give Ωm◦ = 1.
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