Cosmic Snow Clouds

Mark Walker
(Manly Astrophysics)

&

Mark Wardle
(Macquarie Uni)
Aspects of H_2 Snowflakes

- Pure solid is volatile - cannot survive in ISM
- Charged grains much more durable (MW 2013)
- Pure solid is highly transparent in optical/IR
- Dominant spectral features from impurities
- Ionisation chemistry differs from gas phase
- “New” molecule: H_6^+ (Lin, Gilbert & MW 2011)
Low masses, but large radii

H_2 Snow Clouds

Stars

Planets

Pfenniger & Combes 1994
Gerhard & Silk 1996
Snow clouds are very dark
High density, robust structures

Example with $M \approx 10^{-4} M_\odot$
These models may help to explain:

- Regions of super-strong radio-wave scattering in the ISM
 - Sizes $\sim 10^{11}$ AU, number density \sim few $\times 10^3$ pc$^{-3}$

- Cometary globules in Planetary Nebulae
 - Irradiation \rightarrow bloating + mass-loss via wind
 - Bow shock from wind-wind interaction

- G2 and Broad Line Clouds in Quasars
 - Irradiation \rightarrow bloating + winds + bow-shocks
 - Tidal distortion
Snow clouds in galactic nuclei

- Snow clouds are robust → long-lived
- Adapt Oort’s comet model to G2 & Broad Line Clouds
- Large reservoir of clouds + diffusion into loss-cone
 Reservoir ↔ NLR in quasars
- Expect collisions between snow clouds and stars. Result?
- Most of each cloud’s mass resides in a small core
 Core could survive pericentre passage?
- Tidal stretching (expansion) causes condensation of H₂
- Disrupted material ends up being mainly dust?
- Opacity of dust ≫ Thomson opacity
 Radiation pressure important even at L ≪ L_{E*}