Aspen Winter conference, 8th February 2016

Constraining the Galactic dark matter Halo with hypervelocity stars

Elena Maria Rossi
Leiden Observatory, The Netherlands

Collaborators
Re’em Sari (HUJI)
Shiho Kobayashi (Liverpool)
Tommaso Marchetti (PhD, Leiden)
Large uncertainties in shape, orientation, coarseness, mass radial profile and total mass
e.g. Moore+99; Bullock +10; Law & Majewski 10; Vera-Ciro & Helmi 13; Pearson +15; Gibbons, Belokurov & Evans 15;,
A factor of ~6 in mass: is that important?

Wang et al. 15
Testing ΛCDM

In ΛCDM, for $> 10^{12} \, M_{\odot}$ Milky Way halos:

Mismatch between the number of low-mass sub-halos predicted and faint Milky Way’s satellites: “the missing satellite problem”

(Klypin +99; Moore + 99)

the most massive sub-haloes predicted do not correspond to any of the known satellites of the Milky Way: “the too big to fail problem”

(Boylan-Kolchin, Bullock, & Kaplinghat 11)

A lighter Halo ($< 10^{12} \, M_{\odot}$) can solve the problem

\Rightarrow halo mass determination within that range can thus be used to test cosmological models
Hyper-velocity stars

So far, a small fraction detected:
- First detection in 2005 (Brown et al.),
- ~20 so far discovered
- Estimated $\sim 10^4$ of all masses out to about 100 kpc (Brown et al. 07)

Current discovery strategy yields biased sample:
- Found spectroscopically (SDSS)
- Targeting the outer halo
- All late B-Type stars ($\sim 3-4$ M_{\odot})
- Only line-of-sight velocities

Brown 2015
HVSs are exceptional tools

- Allow study of Galactic Centre stars, in more accessible part of the sky
- Are alternative dynamical tracers of the Galactic Potential
 (Gnedin et al. 2005 Yu, Q. & Madau, P. 2007)
Origin of Hypervelocity stars

Hills mechanism

Before

SgrA*

Hills 1988

After

Keck/UCLA
Galactic Center Group

S-star cluster at < 0.04 pc from SgrA*

Perets + 07; Antonini & Merritt 13; Madigan + 14
Ejection velocity

We use a **restricted 3-body formalism**, exploiting $m/M \ll 1$

The HVS ejection velocity *analytically* depends on binary mass and separation

$$v_{HVS} \approx \sqrt{\frac{2GMc}{a}} \left(\frac{M}{m} \right)^{1/6}$$

numerical factor here of the order of unity

Given separation and mass distributions \Rightarrow HVS velocity distribution

Sari, Kobayashi & EMR 2010; Kobayashi+ 2012; EMR, Kobayashi & Sari 14
velocity distribution in the halo

Agnostic approach: to define the Galactic Potential only by its escape velocity V_G from the inner Halo (at ~25 kpc)

$$v^2 = v_{ej}^2 - V_G^2$$

shaped by

>99% probability data do not come from model
Are binary stars in GC different?

late B-type binaries
Star forming regions;
Sana + 13

late B-type binaries in Solar Neighbourhood;
Kouwenhoven+07; Duchene & Kraus 13

K-S test fails to reject that data come from model

EMR+ in prep.
Constraining "V_G" range

late B-type binaries
Star forming regions;
Sana + 13

$V_G = 950 \text{ km/s}$

Binary mass ratio distribution, γ: f_{α}

Binary separation distribution, α: $f_{\alpha} \propto a^\alpha$
720 km/s < V_G < 780 km/s
note: ~720 km s$^{-1}$ is the escape velocity from the bulge

\Rightarrow For 720 km/s < V_G < 780 km/s
stripe of minima overlaps with observed binary population in star forming regions BUT never overlaps with Solar Neighbourhood data

Lets’ take NWF and de-project the V_G range onto Mass-scale radius plane for values make with a star

…plus the potential for the disc and bulge (Hernquist 1990)
Constraining the Halo mass

$\alpha = -1$ and $\gamma = -3.5$

HVS data suggest a light halo with mass $< 10^{12} \, M_{\text{sun}}$
Conclusions and Caveats

— Massive $> 10^{12} \ M_{\odot}$ Halo & GC binaries not like those observed in either star and non-star forming regions

 OR

— Light $< 10^{12} \ M_{\odot}$ Halo & GC binaries like those observed in star forming regions with $\alpha \sim -1$ and $\gamma \sim -3.5$

 \Rightarrow this would support ΛCDM

Caveat: the semi-major axis distribution may reflect a selection in binaries that fall into the tidal radius:

if e.g. full loss cone, than a light halo + binaries like in Solar N. is also OK
back-up slides
the Halo mass in simulations

\[\alpha = -1 \text{ and } \gamma = -3.5 \]
The Universe’s evolution

Understanding the Universe’s evolution is understanding galaxies

An outstanding laboratory: the Milky Way

galaxies are the Universe’s “bricks”
The galaxy formation

- It is traditionally addressed with Simulations + Observations

- Successful field but still many open questions. Let’s consider our own Galaxy:
 - The visible part is hard to reproduce
 - The Dark Halo is poorly constrained and different realisations of the MW give different mass, shape and lumpiness
Our computational method

- **Others:** Velocities and trajectories are calculated via 3-body or N-body interactions for a given parameter space (e.g. Brown’s group; Gualandris +)

- **We:** restricted 3-body formalism, exploiting $m/M << 1 \implies$ more efficient method

Sari, Kobayashi & EMR 2010; Kobayashi+ 2012; EMR, Kobayashi & Sari 14
dynamical tracers

e.g. Johnson, Hogg Gibbons, Law & Majewski, Helmi, Wang, Bullock, Ibata, Price-Whelan, Belokurov….
dynamical tracers

Hyper Velocity Stars

Halo Stars

Satellite Galaxies

Sagittarius Stream
Our computational method

We use a restricted 3-body formalism, exploiting $m/M \ll 1 \Rightarrow$ more efficient method than N-body.

Sari, Kobayashi & EMR 2010; Kobayashi+ 2012; EMR, Kobayashi & Sari 14