

Very High-Energy Astrophysics with the Cherenkov Telescope Array

Rene A. Ong (UCLA)

Astrophysics Seminar, UCSD, 2 May 2018

Outline

Scientific & Technical Motivation

The highest energy photons Three science topics in brief Experimental Technique Planning for the Future \rightarrow CTA

Cherenkov Telescope Array (CTA)

CTA Design & Performance \rightarrow Scientific Capabilities Present status (2018): sites, timeline, etc. (Extra: Detecting optical photons with CTA)

Summary

Photons of all wavelengths

The Highest Energy Photons

telescope array

VHE γ-ray Sky c1995

Detected AGN (5)

	UCSD 2003 Detected AGN (5)						
FRO	<u>Source</u>	<u>Type</u>	<u>Z</u>	<u>Confirmed?</u>	<u>Comments</u>		
	Mrk 421	BL Lac	0.031	Yes	flaring, X-ray, IR abs.? spectral variability		
	Mrk 501	BL Lac	0.034	Yes	flaring, X-ray, IR abs.?		
	1ES 1959+650	BL Lac	0.048	Yes	flaring, IR abs.?		
	PKS 2155-304	BL Lac	0.116	Yes			
	1ES 1426+428	BL Lac	0.129	Yes	weak source		

VHE γ-ray Sky c2005

VHE γ-ray Sky c2018

Detailed source information: spectra, images, variability, MWL ...

VHE Astronomy Comes of Age

- Dominant expectation (pre-1990)
 - Will find the "cosmic ray" accelerators probably SNRs
- Reality (present day)
 - Astonishing variety of TeV emitters
 - Within the Milky Way
 - Supernova remnants
 - Bombarded molecular clouds
 - Stellar binaries colliding wind & X-ray
 - Massive stellar clusters
 - Pulsars and pulsar wind nebulae
 - Supermassive black hole Sgr A*
 - Extragalactic
 - Starburst galaxies
 - MW satellites
 - Radio galaxies
 - Flat-spectrum radio quasars
 - 'BL Lac' objects
 - Gamma-ray Bursts

Cosmic Particle Accelerators

Three Science Topics (in brief)

- Supernova remnants & origin of cosmic rays
- Active Galactic Nuclei (AGN)
- Dark Matter & the Galactic Center

Supernova Remnants

SN 1006

(Credits:

X-ray (blue): NASA/CXC/Rutgers/ G.Cassam-Chenai, J.Hughes et al.; Radio(red):NRAO/AUI/NSF/GBT/VLA/ Dyer, Maddalena & Cornwell; Optical: (yellow) Middlebury College/ F.Winkler, NOAO/AURA/NSF/CTIO Schmidt & DSS)

TeV gamma rays

0.40

Supernova Remnants (SNRs)

"Standard Model" for high-energy cosmic rays

- SNR, outer layers ejected with v ~ several x10³ km/s.
- Expanding shell & <u>shock front</u> sweeps up material from ISM.
- Acceleration of particles via diffusive shock acceleration.
- In ~ 10⁴ yrs, blast wave deccelerates and dissipates.
- Can supply and replenish CR's if ε ~ 5-10%.

RXJ 1713-3946 Age = 1600y D = ~1 kpc

Good model ... is it right ?

IC 443 Age ~ 30ky D ~ 0.8 kpc IC 443 WISE – <mark>22, 12, 4.6</mark> μm

SNR IC 443 – a proton accelerator ?

Supports the idea for proton acceleration. But more sources and better data (spectra, morphology) are needed !

Active galactic nuclei and their jets

Cen-A

Nearest AGN, d ~ 4 Mpc Radio lobes 3-4°, ~300 kpC Active galactic nuc and their j

1 deg

kpc -

"Inner jet"

Radio

Cen-A

Nearest AGN, d ~ 4 Mpc Radio lobes 3-4°, ~300 kpC TeV energies HESS, ApJL 695 (2009) L40

Blazars: AGN with jets pointed at us

Strong & highly variable TeV sources

Many important aspects not understood: energetics, particle type, emission zones ... Need for detecting sources at all flux levels, unbiased sample of luminosity function.

Dark Matter: Complementary Approaches

WIMP annihilation In the cosmos

Indirect Detection

WIMP-Nucleon Elastic scattering

Direct Detection

Part Hands And H

Heavy particle prod. MET + jets

LHC Production

Indirect Detection of DM

Galactic Center – A High-Energy Mystery

Ghez et al., 2012 1" x 1"

TeV γ -ray emission from SGR A*:

- intense & highly non-thermal
- completely unexpected
- not understood !

DM search is still very promising, but must be carried out *away* from central Galactic ridge.

Experimental Technique & Planning for the Future

Fermi Large Area Telescope (LAT)

Steeply falling spectrum:

x10 in Energy \rightarrow divide by 100-500 in flux

- Large effective area needed to get detectable signals at VHE
- Natural detector: the atmosphere

Imaging atmospheric Cherenkov technique

Pulse is ~few ns duration Effective area = Cherenkov light pool

Image in

camera

~10⁵ m² !

Whipple 10m γ-ray Telescope (1968-2011)

Mt. Hopkins, AZ USA

- Pioneered use of Imaging
- Made first source detection. (Crab nebula in ~90 hours)

cosmic ray

Imaging atmospheric Cherenkov arrays

Current generation IACT arrays detect Crab nebula in ~2 min

Image in

camera

VHE Telescopes (2018)

Planning for the Future

What we know, based on currents instruments:

Great scientific potential exists in the VHE domain

Expect many more sources & deeper probes for new physics

IACT Technique is very powerful

> Have not yet reached its full potential \rightarrow large Cherenkov array

Exciting science in both Hemispheres

Argues for an array in both S and N

Open Observatory \rightarrow **Substantial reward**

Open data/access, MWL connections to get the best science

International Partnerships required by scale/scope

Project must develop the instrument and the observatory

Requirements & Drivers

Energy coverage down to 20 GeV (Discovery domain: GRBs, Dark Matter)

Good energy resolution, ~10-15%: (Lines, cutoffs)

> Rapid Slew (20 s) to catch flares: (Transients)

10x Sensitivity & Collection Area (Nearly every topic) Energy coverage up to 300 TeV (Pevatrons, hadron acceleration)

Large Field of view 8-10° (Surveys, extended sources, flares)

Angular resolution < 0.1° above most of E range (Source morphology)

cherenkov telescope array

From current arrays to CTA

Light pool radius R ≈ 100-150m ≈ typical telescope Spacing

Sweet spot for best triggering & reconstruction... most showers miss it!

✓ Large detection Area
 ✓ More Images per shower
 ✓ Lower trigger threshold

CTA Design (S array)

Science Optimization under budget constraints

Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes (LST's)

Medium energies

100 GeV – 10 TeV 9.5 to 12 m diameter 25 single-mirror telescopes up to 24 dual-mirror telescopes (MST's/SCTs)

High energies

10 km² area at few TeV 3 to 4m diameter 70 telescopes (SST's)

CTA Sensitivity in Context

Galactic Discovery Reach

Survey speed: x300 faster than HESS

VHE sources

(with distance

HESS/

VERITAS

СТА

Angular Resolution

Transient Capability (< 100 GeV)

cherenkov telescope arra

S. Inoue et al., arXiv:1301.3014

CTA Implementation & Status

CTA Consortium

CTA is being developed by the CTA Consortium:

No single country has an FTE level > 25% total

Selected Sites for CTA

cherenkov telescope array

CTA Telescope Types

23 m diameter / f = 28m390 m² dish area 1.5 m mirror facets

LST Prototype on La Palma February 2018

Medium Telescope (MST)

. ...

100m² mirror dish area
16 m focal length
1.2 m mirror facets

8° field of view ~2000 x 0.18° pixels

25 MSTs on South site 15 MSTs on North site

Prototype at DESY (Berlin)

MST Integrated Camera

US Contribution: Dual-Mirror MST

- Schwarzschild-Couder design (V. Vassiliev et al.)
- 9.7m primary, 5.4m secondary
- 11328 x 0.07° Si-PMT pixels
- 8° field-of-view
- Prototype under construction: Whipple Obs. (Arizona, USA)

US involvement prioritized in 2010 Decadal Survey

Small Sized Telescopes (SSTs)

- 3 different prototype designs
- 2 designs use two-mirror approaches (Schwarzschild-Couder design)
- All use Si-PMT photosensors
- 7-9 m² mirror area, FOV of 9°

SST-1M Krakow, Poland SST-2M ASTRI Mt. Etna, Italy SST-2M GCT Meudon, France

CTA Phases & Timeline

cherenkov

telescope arrav

- 2017-8: Hosting agreements, site preparations start
- 2019: Start of construction ?
- Funding level at ~65% of required for baseline implementation
 - \rightarrow start with *threshold implementation*
 - \rightarrow additional funding & telescopes needed to complete baseline CTA
- Construction period of ~6 years (completion in 2026)
- Initial science with partial arrays possible before construction end

Key Science Projects (KSPs)

cherenkov telescope array

Science with the Cherenkov Telescope Array

Science with CTA

200 page document describing core CTA science; placed on arXiv; to be published as book.

arXiv.org > astro-ph ><mark>arXiv:1709.07997</mark>

Search or Artic

Astrophysics > Instrumentation and Methods for Astrophysics

Science with the Cherenkov Telescope Array

The Cherenkov Telescope Array Consortium: B.S. Acharya, I. Agudo, I. Al Samarai, R. Alfaro, J. Alfaro, C. Alispach, R. Alves Batista, J.-P. Amans, E. Amato, G. Ambrosi, E. Antolini, L.A. Antonelli, C. Aramo, M. Araya, T. Armstrong, F. Arqueros, L. Arrabito, K. Asano, M. Ashley, M. Backes, C. Balazs, M. Balbo, O. Ballester, J. Ballet, A. Bamba, M. Barkov, U. Barres de Almeida, J.A. Barrio, D. Bastieri, Y. Becherini, A. Belfore, W. Benbow, D. Berge, E. Bernardini, M.G. Bernardini, M. Bernardos, K. Bernlöhr, B. Bertucci, B. Biasuzzi, C. Bigongiari, A. Biland, E. Bissaldi, J. Biteau, O. Blanch, J. Blazek, C. Boisson, J. Bolmont, G. Bonano, A. Bonardi, C. Bonavolontà, G. Bonnoli, Z. Bosnjak, M. Böttcher, C. Braiding, J. Bregeon, A. Brill, A.M. Brown, P. Brun, G. Brunetti, T. Buanes, et al. (514 additional authors not shown)

(Submitted on 23 Sep 2017)

The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic patience his excerpts for dark matters. CTA is an excloser of the excloser provides and the excerpts from the immediate.

1. Introduction to CTA Science — J.A. Hinton, R.A. Ong, D. Torres	1
2. Synergies — S. Markoff, J.A. Hinton, R.A. Ong, D. Torres	2
3. Core Programme Overview — J.A. Hinton, R.A. Ong, D. Torres	3
4. Dark Matter Programme – E. Moulin, J. Carr, J. Gaskins, M. Doro, C. Farnier, M. Wood, H. Zechlin	37
5. KSP: Galactic Centre – C. Farnier, K. Kosack, R. Terrier	58
6. KSP: Galactic Plane Survey - R.C.G. Chaves, R. Mukherjee, R.A. Ong	70
7. KSP: LMC Survey – P. Martin, C. Lu, H. Voelk, M. Renaud, M. Filipovic	8
8. KSP: Extragalactic Survey – D. Mazin, L. Gerard, J.E. Ward, P. Giommi, A.M. Brown	96
9. KSP: Transients – S. Inoue, M. Ribó, E. Bernardini, V. Connaughton, J. Granot, S. Markoff, P. O Brien, F. Schussler . 1	09
10. KSP: Cosmic Ray PeVatrons - R.C.G. Chaves, E. De Oña Wilhelmi, S. Gabici, M. Renaud	30
11. KSP: Star Forming Systems - S. Casanova, S. Ohm, L. Tibaldo	37
12. KSP: Active Galactic Nuclei - A. Zech, D. Mazin, J. Biteau, M. Daniel, T. Hassan, E. Lindfors, M. Meyer	48
13. KSP: Clusters of Galaxies - F. Zandanel, M Fornasa	74
14. Capabilities beyond Gamma Rays - R. Bühler, D. Dravins, K. Egberts, J.A. Hinton, D. Parsons	84
15. Appendix: Simulating CTA – G. Maier	89

Galactic Plane Survey (GPS)

Full plane survey to depth of 1.5-2.5 mCrab

Galactic Plane Survey (GPS)

Full plane survey to depth of 1.5-2.5 mCrab

Expect 500-800 new sources: PWN, SNR, binaries, unknowns ...

Also, Exgal actic Survey of 1/4 sky to 6 mCrab

Galactic Center Survey

ctta cherenkov telescope array

Multiple survey regions to encompass the entire GC region.

Astrophysical Goals:

- Determination of nature of central source, including a sensitive search for variability
- Detailed view of VHE diffuse emission and interaction of CR with clouds
- Resolving new, undiscovered point and
- extended sources
- Confirming the PeVatron hypothesis of SGR A*

Deep observation of GC Halo for indirect DM search

Dark Matter Reach

M. Wood et al. arXiv:1305.0302

Sensitivity below thermal relic in TeV mass range - critical reach, not achieved by direct detectors or LHC

Optical Science with CTA

Because of its very large photon collection area, CTA has great potential in the areas of:

- Optical SETI (OSETI)
- Stellar intensity interferometry mas angular scale measurements
- Optical photometry

eclipsing binaries transiting exoplanets asteroid occultations fast radio bursts

Why optical rather than radio?

Idea first floated by R.N. Schwartz & C.H. Townes

'Interstellar and Interplanetary Communication by Optical Masers' Nature 190, 205 (1961).

• It is easier to deal with noise

- radio waves contend with interference from radio antennas, radio stations, the receiver itself adds noise (thus can require cooling), ...
- for optical the only significant source of terrestrial interference is lightning & Cherenkov radiation

• Pulsed lasers can easily outshine the host star

no known natural sources would have photons within a few ns of each other
 could easily be 1000x brighter in the receiving telescope

• Much easier to form a narrow beam of light

- a radio transmitter 100 ly distant & projecting omni-directionally would require 5800 trillion watts to be detectable ~ 7000x the electricity-generating capacity of the USA!
- width of beam \propto wavelength of beam / diameter of the antenna used

 $\rightarrow \lambda_{optical} \ll \lambda_{radio}$

M. Ross IEEE Spectrum 7, 32 (2006).

Just need a suitable optical light bucket as a receiver...

How do current IACTs compare ?

¹ Abeysekara et al. (2016)

² Hanna et al. (2009)

³ Mead (2013)

⁴ Howard et al. (2004)

⁵ Maire et al. (2014)

⁶ Howard et al. (2004)

⁷ Korpela et al. (2011)

⁸ Schuetz et al. (2016)

Large mirror area \rightarrow Excellent photon sensitivity

#stars

~1.000

distance to star [pc]

~1,000,000

Additional Advantages of IACTs

The large field of view of the cameras helps to

- remove background signals
- monitor multiple stars simultaneously

IACTS can monitor ~45-150 stars (V>12) in a single pointing

OSETI event selection criteria

- They appear in the same place in all four telescope cameras
- They have the same intensity in each telescope
- They are point-like (c.f. optical point-spread function)

Fig. 3.— Point-like events generated by an object moving across the field-of-view of VERITAS over the course of 28.9 seconds on MJD 57283. Left: A single event viewed by all four telescopes. Right: A subset of the eight recorded events illustrating the motion of the image across the camera of a single telescope.

Abeysekara et al. Ap.J 818, L33 (2016)

28 9

(Slides from M. Daniel (SAO), J. Holder (Delaware), and T. Hassan (DESY))

Cosmic rays show parallax due to shower max. only being a few km in altitude

Shooting stars/satellites will move through the camera

The VERITAS OSETI Publication : ApJ 818, L33 (2016)

- The star KIC 8462852 has been identified as a SETI target, based on its unusual lightcurve.
- VERITAS had 10 hours of "free" data in its archive, taken over 6 years.

 \Rightarrow no signal detected.

"Boyajian et al. 2015 recently announced KIC 8462852, an object with a bizarre light curve consistent with a "swarm" of megastructures. We suggest this is an outstanding SETI target."

J.T. Wright et al. *ApJ* **816**, 17 (2016).

Since the publication, 2-3 additional hours have been taken, mostly snapshots on 0FGL J2001.0+4352

OSETI with VERITAS: What Next?

 BREAKTHROUGH
 ABOUT
 BOARD
 ARE WE ALONE?
 NEWS
 EVENTS
 CONTACTS
 Search

 LISTEN
 LEADERS
 RESEARCH
 TELESCOPES
 OPEN DATA
 Search
 Search

LISTEN

Breakthrough Listen is the largest ever scientific research program aimed at finding evidence of civilizations beyond Earth. The scope and power of the search are on an unprecedented scale:

The program includes a survey of the 1,000,000 closest stars to Earth. It scans the center of our galaxy and the entire galactic plane. Beyond the Milky Way, it listens for messages from the 100 closest galaxies to ours.

Test with 30 h of observations next season

- a list of ~1700 preferred stars
- archival search would also start here

OSETI with CTA

With a large number of telescopes, many targets can be observed simultaneously (Slides from M. Daniel (SAO), J. Holder (Delaware), and T. Hassan (DESY))

CONCLUSIONS

With many discoveries, VHE γ -rays are now a well-recognized astrophysical discipline & part of growing multi-messenger science.

VHE photons explore the very non-thermal universe and key questions in fundamental physics

Outstanding science potential & power of atmospheric Cherenkov technique \rightarrow CTA

IACTs have interesting capabilities for optical photon detection

Cherenkov Telescope Array (CTA)

Outstanding sensitivity & resolution over wide energy range Far-reaching key science program Open observatory with data released to public CTA requires a broad partnership of countries and communities – including the US