NCR Journ

Volume 4, Number 1

August 1990

Secure Distributed Object System

Cuard : |IGEI\H:II'|/‘- Application (g B
Al f&ﬁ’lgnﬂ @ - I (erilgnt} \-E“

i =

Drireclory Direciony
Cormn's TLEAR Comm's
Services - Services

A - | ems

This figure from Progeess i Secure Distributed Systems
by Jan Kruys shows a conceptual clientserver system
that makes use of cbjecl-oriented applications thal
implerment their own access securily.

In This Issue

Progress in Secure Distributed Systems oo

fare P Kruys

Knowledge Base Development: A Top Down Approach

to Design and Test, Eric N. Mintz

The X.25 STREAMS Driver Prototype ovviivi v iiieiinnna,

L. P. Crosthwaite and M. F. Vigil

A Constraint Knowledge Representation Structure for lmproving

Search and Problem Solving Techniques, Gene Pierce

Report on a Development Project Use of a Issue-Based Information . . .

System, K. C. Burgess Yakemovic and E. Jeffrey Conklin

Closing the Engineering to Manufacturing Information Gap

Bob Mackowiak, Sandy Reeser, and David Walker

Internet Protocols Add a New Dimension in Tower Interworking. . . .

Robert A. Heath and David L. Wingo

19

25

37

Phis iy @ description of our experiences
relocating a portabie networking product to @
UNIX STREAMS enviromment. The
capabllities of STREAMS make # possible to
move existing X.25 networking software from
R operating user space into its kernel, To test
the feasibility of this assumption and to
expose the relevant techinical issues a prototyfre
X 25 STREAMS driver was developed. The
Tessons tearned from the protolyping effort are
the subject of this article.

The X.25 STREAMS
Driver Prototype

L. P. Crosthwaite and M. F Vigil

SE-5an Diego

TREAMS is a major component of

the Networking Support Utilities first
provided by AT&T in UNIX® System V,
Release 3.0, It provides the UNIX
networking developer a new means of
implementing Input/Oulput process-
ing, STREAMS is a general, flexible
facility which includes a set of tools for
development of UNIX system commu-
nication services. Adherence to
STREAMS architecture encourages
modular software design and provides a
standard mechanism and interface at
the swstem call level and within the
UNIX system kernel. STREAMS pro-
vides a powerful framewotk for
development with a user interface
consistent with the existing UNIX
character 1/0 interface.

NCR has provided its customers with
X.25 networking solutions for several
yvears. The portable X.25 hase is
successfully marketed on the Tower?
ITX, and VRX product lines. With the
announcement of AT&ET's UNIX
STREAMS architecture, another
environment is identified which
enhances the usability and performarnce
of NCR's X.25 networking facilities.

Before we embarked on the Standard
Development Process, a prototype X.25

STREAMS driver was developed. The
purpose of this prototype was to pro-
vide the development staff with insight
into the technical issues associated with
the new STREAMS architecture. The
lessons learned from the prototyping
effort were then applied to the plan-
ning, design, and implementation of
the final product.

Motivation

The primary motivation for porting X.25
to the STREAMS environment is the
need to support a STREAMS-based 051
Networking Layer. With the current
implementation of X.25 on the UNIX
Tewwer, aconsiderable amountof process
switching and data movement is
required when sending or receiving
messages. This becomes more apparent
when vou consider the new OS5I
Networking Services, which are
implemented in STREAMS. Figure 1
depicts the components of the existing
implementation.

With thls configuration, the OSI ap-
plication uses a standard STREAMS sys-
tem call to pass a message to the OSI
Network Services STREAMS driver. Over

Augusi 1990 — Volumne 4, Number 1 19

Current UNIX Tower O51/X.25 Implementation

Figure 1: With the
current implementa-
tiom of X.25 on the
UMIX Tower, a consid-
erable amount of pro-

UMNIEX Bun Time Support

cess switching and
data movement is

required when send-

— ing or receiving mes-
| Eﬂw x"a_s m :I sages, This becomes
mare apparent when
I | & vou consider the new
{ D51 Metwarking Ser-
Q51 Appl : wices, which are imple-
. | COMCCS | 5|CGM LH.PB| mented i STREAMS.
Lpper & 3 i 3
Session L] |
— Trans il
Tu Class 2/0 | Tp4%25
f_a — 3 T
Strm | | St Strem. Strm Kernel
3 3] CCs
Device
Driver
08 Melwork Service 5
STREAMS Diriver
HDLC
e ! Driver
4 TRRm- .
Transpart | | Interfacs
¥ T
X.25 anOSlapplicationmayuse Class4 space. COMCCS then transfers the

Transporl Services or the TP 2/0 Inter-
face. Depending on which service is
chosen, the appropriate STREAM to the
O8I driver is used. The message is cop-
ied from user space to STREAMS mes-
sage blocks al the Streamhead.

After the appropriate processing is
performed, the OSI Network Services
STREAMS driver passes the message via
STREAMS facilities to one of two pro-
cesses executing in user space (ie,
TRANSCLASS Z/0 or TP4x25). The
STREAMS message blocks are copied back
to user space at the Streamhead.

The TRANSCLASS 2/0 and TP4X25
processes request services from X.25 by
issuing a standard I/O request to the
CCS pseudo-device driver, The message
is copied from user space into kernel
space during this system call. The CCS
driver passes the message, which is still
destined for X.25, to a separale process,
COMCCS. Again, the message is copied
from kernel space to buffers In user

20 The NCR Journal

message tothe X, 25 process via a queue,
which is managed by the UNIX Run
Time Support operaling system depen-
dent code. The message is sent by X.25
to the HDLC driver for transimission on
the link using a standard /O request,
and the message is again copied from
user space to kernel space before being
transferred across the physical link to
the nerwork,

A message from the link bound for an
OSTapplication follows nearly the same
path in reverse.

With the X.25 functionality integra-
ted into the STREAMS architecture, a
more efficient configuration is possible,
The ability to provide X.25 processing
in the kernel climinates the need for
much of the process switching and
message copying currently required.
Figure 2 depicts a pure STREAMS
implementation.

The interface between the OS] Net-
working Services and the X.25 software

is transformed into STREAMS message
blocks and those facilities provided by
STREAMS to manipulate them. The
interface between the X.25 software and
the HDLC driver is also converted to
STREAMS message facilities, Message
copying occurs onde at the Streammhead.

Assumptions about STREAMS

Realizing that the facilitics of STREAMS
would simplify the current OSI/X.25
implementation and possibly improve
the performance of }.25 in general, we
began researching the features of
STREAMS (see Figure 3). After
completion of this preliminary study,
we made several assumplions based on
our research,

STREAMS provides a standard inter-
face and an overall strategy for imple-
menling communications products on
UNLX. The user interface provided by
STREAMS incorporates the advantages
of the exisling character /O subsystem.
A consistent interface to all I/ devices
is presented to the user (“open,” “close,”
“read,” “write,” “ioct]l”). Additional in-
terfaces (“getmsg,” “putmsg,” “poll”)
are provided.

STREAMS provides a standard pro-
gramming environment for the UNIX
driver developer. This climinates the
need to develop common utility rou-
tines and should result in a savings in
driver code space.

STREAMS provides a high-perfor-
mance buffer-managementmechanism.
The message-handling mechanisms
provided by the STREAMS architecture
eliminate the necessity to move data
during message processing. The facilitics
provided by STREAMS to manage the
message buffers are flexible vet elficient.

STREAMS climinates one of the
disadvantages of the existing /O
subsystem by providing dynamic
configuration. The user program can
dynamically configure additional
services not supplied by the device driver.
This is accomplished by “pushing”
modules onto a protocol stack in a
“pipelike” fashiom to provide various
protocol layers.

The modular nature of STREAMS
allows various functions to be provided
as separate modules independent of the
device drivers, This leads to a large
amount of portable code that can be
shared across diverse platlorms and
nelworking configurations. This
modular architecture can be used to
reflect the layering characteristics of
contemporary network architectures,
and complements the existing portable
communications products produced by
NCR.

Prototype Development

With these assumptions in mind, we
began our portof the X.25 base software
to STREAMS. QOur goalwasan X.25 DTE
prototype, which could demonstrale
messageexchange, Cur philosophy was
o validate the architecture as quickly as
possible, We saw the prototype as dis-
posable, and applied cursory design to
its implementation.

An existing X.25 test application was
used to ensure that it was possible to
issue a call and perform data transfers to
aremuote DTE using a DYNAPAC Multi-
Switch. Only the device name used
with the “open” command required
maodification. Minimal changes to the

Dynamic Configuration Example

Figure Z; The atility to
provide X.25 process-
img in the kermel elimi-
nates the need for
much of the process
switching and message
copying currently
required. This figure
depicts a pure
STREAMS OSI1/X.25
implermentation.

Lisesr

Pure STREAMS O51/X.25 Implementation

05 Appl

Upper &
Session

TLI

Rermel

F

3 1 i
051 Metwork Service

=

STREAMS Run Time Support

 Portable X.25 fase

test application were required to run in
the STREAMS environment,

Figure 3: Dynamic

X.25-Appl

Configuration
Example.
Q5l-Appl
L4
A
¥
05l
MNetwork
Services

K25
Multiplexing
Driver

T

e

l
STREAMS
| HDLC Driver |

In order to expedite the prototyping
effort, a large amount of error and eX-
ception-handling code within the X.25
base was circumvented. We assumed
the physical link to the X.25 network
wontld always be up. Shutdown process-
ing was considered unessential. Timing
facilities of the X.25 base were disabled.
The prototype did not need to handle
large data flows, so the STREAMS inter-
nal flow control mechanism was not
utilized.

The existing UUNIX Run Time Support
code, TTRTS (see Figure 1), was the basis
for the prototype operating system-
dependent code. Only those changes
required to provide a STREAMS X.25
driver with “demo” capabilities were
made. The resulting STREAMS Run Time
Support code, SRTS, and the portable
X.25 base were linked with the UNIX
kernel.

This linking process was difficult and
frustrating. It exposed the presence of

August 1990 - Voltwe 4, Number 1 21

duplicate variable names shared by our
X.25 software and the operating system.
This, of course, was never an issue when
the X.25 software resided in user space.
Of greater concern was the fact that
common UNIX service rtoutines
(*memcmp,” “memcpy,” “time,"”
“scani,” “sprintf”), available in usecr
space, were ne longer available for the
kernel-based implementation. Initially,
stubs were added to resolve references.
Eventually, new code was incorporated
into the driver to perform this needed
functionality,

At the beginning of the prototyping
effort, our organization lacked experi-
ence in UNIX kernel development. We
were communication developers accus-
tomed to life in user space and were
accustomed to receiving error messages
and an occasional core dump when mis-
takes were encountered, We were faced
with system crashes and the 6804 in-
struction set. The rules and tools asso-
ciated with kernel development were
not readily apparent. ‘Trial and error
with the Kernel Debugger (KDB) was
our t}l]]}' TeCOuUrsc,

In this manner, we found that at-
tempts to allocate memory lor internal

Basic Multiplexing Driver Compaonents

data structures resulted in system
crashes. Theimportant functionality of
“malloc” and “free” would have to be
implemented within the X.25 driver.

With previous development efforts,
machine resources were available in
multi-user mode. This luxury was lost
with kernel development. Not only was
it necessary to re-link the kernel and
reboot (often several limes per day), but
programming errors resulted in system
crashes.

A major goal of our prolotype
development was to identify the issues
relevant to the final X.25 STREAMS
driver. By the time our prototype was
running, we had a very good idea of
what would be required.

Implementation Details

The basic design of the X.25 STREAMS
prototype is relatively simple. Since
X_25 accepts and processes input and
output for multiple applications, it is
implemented as a STREAMS Multiplex-
ing driver (Figure 4). By definition, a
STREAMS multiplexer is a pseudo-driver
with connected multiple STREAMS,

Figure 4: The basic
design ol the X.25
STREAMS prototype is
relatively simmple. Since
X.25 accepts and pro-
CELLEy inpuT an< out-
#3 pul for multiple
applications, it is

implemented as a
STREAMS Multiplexing
drive.

Application Application Application
#1 #2
|
Mser | Stream 41 Stream #2 Stream #3
Keme|

o0 Wi
Upper LUpper €
Fair #1 Pair #2

|ﬁ R Upper Q

Pair

X.25 Multiplexing Driver

Upper O
Pair #3

To HDLC Driver

22 The NCR Journal

Multiple STREAMS are connected
above a driver by multiple open calls.
Each distinct STREAM provides a pair of
queues, which the applications use to
communicate with the multiplexing
X.25 STEEAMS driver. The close system
call dismantles the STREAM, STREAMS
requires that all multiplexer drivers
contain special developer-provided
software to perform the multiplexing
datarouting and to handle flow contraol,

Tosummarize the X.25 open and close
processing of the STREAMS Run Time
Support (SR15) code, a minor device
number is assigned to each application
by “x250pen” when it issues an open to
the X.25 Multiplexing driver. A global
data structure (“x25-mux”) is used to
correlate the upper queue pair of the
newly opened STREAM to the applica-
tion and its minor devicenumber. When
the application issues a close system
call, the “x25¢lose” procedure clears the
associated “x25-mux” entry.

The lower queue pair of the X.25
driver is used to transfer messages to
and from the HDLC STREAMS driver.
Since this driver was being developedin
parallel and was unavailable, aloopback
driver routed messages Lo user space
where the existing HDLC driver was
accessed, Figure 5 illustrates this.

To provide the connection between
the loophback driver and the X.25 Multi-
plexing driver, a daemon process opens
the multiplexing and the loopback driv-
ers using two separate open system calls,
The daemon then links the drivers to-
gether using the STREAMS 10CTL-Link
facility. This process remains active to
“hold” the X.25 Multiplexer-to-Loop-
back configuration together.

To complete the prototvpe con-
t'igurati::un, a user process, PROCLAPRE,
issues an open to the loopback driver
and the HDLC driver. This process issues
the appropriate commands to the HDLC
driver to connect the link. A link-up
indicatoris sent tothe X.25 multiplexing
driver through the loopback driver. The
process then waits for a message either
from the link or [rom the STREAM and
passecs iton in the appropriate direction.

Once the drivers are opened and
linked, the X.25 communication

X.25 STREAMS Prototype Design

Figure 5 The lawer
quieus pair of the X.25
driver is used Lo Lrans-
fer messages to and
from the HDLC

X.25

daemon test appl

STREAMS driver. Since
this driver was being
developed in parallel
and was unavailable, a

PROCLAPE

S— "

loapback driver routed
messages b User space
whera the existing

%.25 Multiplexing Driver

HOLC driver was ac-
cessed.

HOLC
Driver

Loopback Driver

subsystem is initialized. The
initialization process involves reading a
parameter file from disk and huilding
the appropriate data structures which
describe the nelwork to the X.25 base.
Since file access is not possible from the
kernel, a STREAMS scrvice interface
between the Multiplexing X.25
STREAMS driver and the daemon process
isused. Thisservice interface allows the
STREAMS driver to make file requests to
the daemon process, The dacmon
pracess performs the actual file 1/O and
then passes cach record to the driver by
putting a message on the STREAM.
Messages processed by the X.25
STREAMS Multiplexing driver are re-
ceived from two sources. Messages may
come from the X.25 application, which
uscs a read/write interface. Messages
may also be received from the HDLO
link via the putmsg/getmsg interface
used by the PROCLAPE process. To
facilitate this architecture, two distinct
STREAMS “put” procedures and one
central service procedure are defined.
Messages [rom applications are re-
ceived by the "x25uwput” procedure
within SRTS when the write system call
is issued, To identify this as a message
from an application, “¥25uwput” ap-
pends a small message block to the front
of it. This string of message blocks is
placed on the queue for processing by

the central STREAMS service procedure,
“x2asmv.”

Message blocks received fram
PROCLAPB are initially processed by
the “x251rput” procedure. The putmsg
interface used by PROCLAPE guarantees
that a small message block, indicating
this is a message from the link, already
precedes the actual message. Therefore,
“x251rput” places this message directly
on thequeue for processing by “x25srv.”

The X.25 Multiplexing driver service
procedure, “x235srv,” is automatically
invoked when a message is placed on
any of its gueues. This service procedure
removes and processes all messages on
all of the queues it services before
terminating.

When “x23srv” receives a message,
the message-type indicator in the first
message block is examined. If the mes-
sage is from an application, it is copied
into a buffer global to the X.25 driver,
The portable X.25 base procedure,
DPN_APPL_SENID, isthen called to proc-
oss the message. If a message is received
from the link, it is copied Into a global
buffer and the portable X.25 base
procedure, DPN_LINK_INTUT, is called,

When messages must be sent to a
particular application, “x25srv” identi-
fies the appropriate STREAMS queue
through the global “x25_mux” data
structure. A STREAMS message block is

allocated and the outgoing message is
copied into it. The STREAMS “putnext”
procedure is called to place the message
on the appropriate Streamhead.

When messages must be sent out on
the link, “x25srv" allocates a message
block and issues the “putnext” STREAMS
procedure to place the message on the
loopback driver's queue, The loopback
driver then passes the message to
PROCLAPE, which calls the HDLC driver
to send it out on the link.

Conclusions

The development of the X.25 STREAMS
prototype enabled us to verify our
original assumptions about STREAMS,
Nearly all proved Lo be true. Significant
performance improvements were
realized in the final product. STREAMS
architecture does simplify commu-
nications solutions by providing a
consistent interfacestandard. Theability
to tailor protocols by pushing various
modules onto the STREAM provides
flexible networking solutions. The
modular nature of this architecture is a
consistent approach for NCR's
communications products,

However, STREAMS did not address
all of our networking driver needs as
claimed. STREAMS provided a
mechanism to allocate and deallocate
message blocks; however, other types of
MEMOTY I'I'Ia]'liiHEI'!'Il:']'lt became our
responsibility. UNIX V.4 has addressed
these problems with more com-
prehensive memory management
tacilities. Required UNIX subroutines
were alsounavailable. This necessitated
our developing additional subroutines
to provide this functionality.

Prototyping was a valuable invest-
ment of our resources, [l provided us
with an opportunity to make mistakes
and learn from them. The planning and
design of the final product was easier
because of this exposure.

References
L. AT&ET UNLX Systern V), STREAMS Primer,
307-229, Issue 1, 19846,

Angust 1990 - Volurne 4, Number 1 23

2. AT&TUNIX System V, Release 3, STREAMS
Programmer’s (Greide, 307227, 1ssue 1, 1986
3. “STREAMS Technology,” a paper by
Gilbert | MoGrath, AT&ET Information

Svstems.

4, WOCR Tower 32, Networks — X.25, D1-
1080-A02, lanuary, 1988,

Pat Crosthwaite gradu-
aled with a BA. degree
in Mathematics from
San Diego State Univer-
sity, He joined NCR in
1974,

Mary Frances Vigil
graduated with a B8,
degree i Mathematics
fromne Arizona State Uni-
versity, She foined NCR
in 1981,

Muost recently they have
bath beennwaorking i the
Communications
Mretwork Software

Department at SE-3an Dicgo and have been
imvolved with a varfety of communications

Prodicts,

24 The NCR Journal

