
Astronomy 82  - Problem Set #2 Solutions (IJC)
Due: Friday, April 18, 2008 before noon.

Problems:

1) Assume  that  a  solar  granule  has  a 
mean  molecular  weight  of  1.34  amu 
(atomic mass units), a density of 2 kg 
m-3,  and  is  roughly  spherical  with  a 
diameter of 1000km.
“Granules,” “convective cells,” and “gas 
parcels”  are  all  roughly  synonymous 
terms  used  in  the  description  of  the 
qualitative  Mixing  Length  Theory 
(MLT),  which  describes  convective 
processes.  
a) What  is  the  total  mass  of  the 

granule?  
Mass is density times volume.  We 
are given the density, and we're quite familiar with the volume of a sphere.  Paying 
attention to units, we have:

m=V =2 kg m−3


4
3
5×105 m 

3
=1.04×1018 kg=1018 kg

b) If its average temperature is 7000 K, what is the amount of thermal energy 
within the granule?  Assume that the average atom has an energy of (3/2)kT.
The total energy is the amount of energy per particle times the total number of 
particles.  We know that there are an Avogadro's Number of these particles (mostly 
atoms and ions) in 1.34 grams, so the total number of particles in the sun is:

N= mparcel

1.34 g  N A= 1018 kg
1.34×10−3 kg ×6.0×1023

=4.5×1044 particles  

This means that the total thermal energy in the granule is roughly:

     T=
3
2

N k T=1.5×4.5×1044
× 1

7
×10−22 J/K×7000K =6.72×1025J=7×1025J

Using the exact value of k would give 6.5 x 1025 J – but since we don't really know the 
shape of the parcel in any case, we can't really claim to know the thermal energy to that 
level of precision.  It's a very rough calculation.

2) If the granule is question 1 stays at the top of the photosphere for 10 minutes, 
a) how much energy does it radiate away if its effective surface temperature is 

6000 K, and its emissivity is 1?  
We'll assume the granule radiates as a blackbody and use the Stefan-Boltzmann 
law, then get total energy radiated via “energy = power times time.”  The integrated 
flux emitted by a greybody is given by the relation F= SBT 4 .  The total emitted 



luminosity  of  the  greybody  is  then  the  flux  times  the  emitting  surface  area: 
L=F A= SB AT 4 .  As the image of solar granules above demonstrates, these 

granules  are  not  strictly  spherical  –  nonetheless,  we will  approximate  them as 
hemispheres protruding from the surface of the sun – thus the effective surface area 
will  be  A=2r 2 (anything within  a  factor  of  several  is  fine).   So  the  power 
emitted is:
L=4d1

2 F 1=4d 2
2 F 2

L=6.28×5×105 m 
2
×1×5.67×10−8

×6000 K 
4
=1.15×1020 W

Therefore the total radiated energy is:

P=L t=1.15×1020 W ×10min×
60s

1min =6.9×1022 J=7×1022 J

Based on the uncertainty in the surface area, anything within a factor of a few is fine.

b) By how much does its temperature drop during the 10 minutes?
 The simplified way to do this is to just look at the fractional amount of energy that was 
radiated from the granule.  Since only 0.1 % of the total thermal energy was radiated 
away, the average temperature will also only drop by 0.1 %.  Since it started at 7000 K, 
the temperature will drop about 7 K.  Not much, but enough for the granule to lose its 
buoyancy and sink back below the photosphere.

3) How long does it take for the sun to convert one Earth mass of hydrogen into 
helium?
First, an initial check: what's a reasonable answer?  The sun weighs about 300,000 as 
much as the earth, so if the time were only “1 hour” then the total lifetime of the sun 
would be less than 300,000 hours (about 34 years).  So it's more likely to be on the 
order of millions of hours (billions of seconds) – or even greater.

We'll  use  the  fundamental  relation  that  “fuel  energy”  =  “radiated  power”  times 
“emitting time,” where the “fuel” in this case is the sun's hydrogen.  How much energy 
is  released by fusing hydrogen?  There are several  ways to find this,  but  a handy 
quantity to remember is listed on your OoMA sheet: “Fusing H to He yields 0.7% of 
mc2.”  Thus fusing four protons to form one alpha particle (a Helium nucleus) yields 
(0.007 x 4 x 938 MeV) = 26 MeV of liberated energy.

In this case, the total liberated energy by fusing one earth mass of hydrogen will be:
E f=0.007mE c2

=0.0076×1024 kg3×108 m/s2
=3.8×1039 J

(compare this to the energy radiated by a granule of solar material, above!)

Since the sun's energy output is essentially constant (a solar luminosity), then the time 
necessary to release this much energy is given by:

t=
E f

Lsun

=
3.8×1039J
4×1026 W

=9.5×1012s=3×105 yr  

Significantly more than “an hour or so,” as discussed initially above – and comfortably 
less than the sun's total lifetime.



 
4) What is the escape velocity from the surface of the sun?  What temperature does 

H gas need to be to achieve this as an average speed?
You should have already done these last week, and the solutions were posted online.  

5) The solar constant, i.e., the flux density of the solar radiation at the distance of the 
Earth is 1390 W m-2.
a) Find the flux density on the surface of the Sun, when the apparent diameter is 

32 arcminutes.
There are more complicated ways to do this,  but the most straightforward is to 
remember that flux density obeys an inverse square law with distance.  The relevant 
distances here are the distance from the effective “center of radiation” (the center of 
the sun) from: (1) the Earth (1 AU) and (2) the sun's surface (i.e., the radius of the 
sun).  
 
You can look up the radius of the sun (700 000 km), but it's also useful to see that 
you can calculate it from its distance and apparent size: D=2 r sun/ dsun .  You can 
rearrange this (and convert from arcminutes to radians) to find the sun's radius:

r sun=dsun D/2=0.51AU 32arcmin×
2 rad

360×60arcmin


r sun=4.7×10−3 AU=7.0×108 m .
 
Now, we apply the inverse square law.  It derives from the constancy of luminosity: 
L=4 d1

2 F 1=4d 2
2 F 2 , and so F 1d 1

2
=F 2 d 2

2 .  Let “case 1” be at the earth's orbit 
and “case 2” be on the sun's surface.  Then,

F sun=Fearth  dearth

dsun


2

=1390 W m−2
 1 AU

4.7×10−3 AU 
2

=6.4×107 W m−2

b) How  many  square  meters  of  solar  surface  is  needed  to  produce  1000 
megawatts?
A little confusing, since the sun's surface doesn't “produce” energy ...  it  merely 
radiates it away after the energy has made its way all the way through the sun's 
structure and out into the photosphere.  Nonetheless, just look at the units of power 
and of flux to figure out the relation to surface area:  P = F A, so A = P / F.  Thus,

A=P /F=
109 W

6.4×107 W m−2=15.6 m2
=16 m2

6) If 4.5 billion years ago the sun had a surface temperature of 5000 K and a radius 
of 1.02 modern solar radii, what was the solar constant at 1 AU?
First we'll see how much the solar luminosity has changed in the last 4.5 Gyr, and then 
we'll use that to determine how the solar constant has changed.  Apparently the sun has 
shrunk slightly and increased in temperature since then... we'll have to see whether the 
decrease in radius (decreasing emitted power) or the increase in temperature (increasing 
emitted power) will have a greater effect.
 



As discussed in problem 2, the luminosity of a radiating object is  L=4 R2
 SBT 4

(assuming the object is a blackbody – a good approximation for the sun).  Thus as the 
radius  and effective temperature evolve over  time,  we see that  the luminosity will 
change as:

L1

L2

=R1

R2


2

 T 1

T 2


4

.

The luminosity of the sun earlier in it's lifetime, then, should be:

L1= R1

Rnow


2

 T 1

T now


4

Lnow= 1.02
1 

2

 5000
5700 

4

Lnow=0.62 Lsun

 
Out at 1 AU, the only varying factor we are considering is the fact that the sun changed 
in total luminosity.  Thus the flux 1 AU from the sun will decrease by the same amount 
as the luminosity, and the solar constant then would have been:
F 1=0.62 F now=0.62×1390 W m−2

=860 W m−2

Of course, significantly less flux would have reach the current position of the earth's 
orbit  –  there  would  have  been  substantially  more  intervening gas  and dust  in  the 
formative stages of the solar system's evolution.  But this is a nice, simplified answer.

7) Calculate the lifespan for the two stars below.  Assume that essentially all of their 
luminosity comes from the fusion of H into He.  Also assume that they begin as 
75% H gas (by mass) and that they will die when they have fused 10% of this gas 
into He.
 
So, 75% of a star's mass is Hydrogen and about 10% of these atoms will fuse into 
Helium – thus, 0.075 M* will undergo fusion.   Referring again to your OoMA sheet, 
you can see that  fusing H --> He releases  0.7% mc2.   Therefore,  the total  energy 
liberated in a star's lifetime is roughly:
E f=0.007×0.75×0.1×M * c2

Since the luminosity of a star is equal to its energy output divided by the time it gives 
off energy, the lifetime of the star should just be t=E /L .

a) High mass star with M = 2 x 1032 kg and luminosity L=4 x 1032 W.
A 100 solar mass star, with a luminosity of one million solar luminosities:

t=
E
L
=

0.007×0.75×0.1×2×1032 kg×3×108 m/s2

4×1032W
=2.36×1013s=7.5×105 yr

Such massive stars live very briefly; thus we see very few of them.

b) Low mass star with M = 1030 kg and luminosity L=4 x 1025 W.
Only half a solar mass, and a tenth of a solar luminosity:

t=
E
L
=

0.007×0.75×0.1×1030 kg×3×108 m/s2

4×1025 W
=1.18×1018s=3.7×1010 yr

These stars can last tens of billions of years --  barring further interactions, they will 
still be burning far into the future of the universe.
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