OoMA Fact Sheet

 $G = (2/3) \times 10^{-7} \text{ dyne-cm}^2/\text{gram}^2$ $c = 3 \times 10^{10} \text{ cm/sec}$ $k = (1/7) \times 10^{-15} \text{ erg/K}$ $h = (2/3) \times 10^{-26} \text{ erg-sec}$ $\hbar = 10^{-27} \text{ erg-sec}$ $N_A = 6 \times 10^{23} \text{ nucleons/gram}$ $m_p/m_e = 1836$ $m_p c^2 = 938 \text{ MeV}$ $m_e \approx 10^{-27} \text{ gm}$ $m_e c^2 = 511 \text{ keV}$ $e=4.8\times 10^{-10}$ esu = 1.6×10^{-19} Coulomb $\alpha = e^2/\hbar c = 1/137$ $L_{\odot} = 4 \times 10^{33} \text{ erg/sec}$ Fusing H to He yields 0.7% of mc^2 He to C & C to Fe about 0.1% of mc^2 each Solar Constant = 1.4 kW/m^2 at 1 AU $M_{\odot} = 2 \times 10^{33} \text{ grams}$ $R_{\odot} = 7 \times 10^{10} \text{ cm}$ $M_{\oplus} = 3 \times 10^{-6} M_{\odot}$ $R_{\oplus} = 6371 \text{ km}$ $M_{J} = 10^{-3} M_{\odot}$ Hubble radius = $c/H_{\circ} = 1.3 \times 10^{28}$ cm Critical density $\sim 10^{-29} \text{ g/cm}^3$ $\sigma_T = (2/3) \times 10^{-24} \text{ cm}^2$ $\sigma_{SB} = 5.67 \times 10^{-5} \text{ erg/cm}^2/\text{sec/K}^4$ Flux from a blackbody surface is $\sigma_{SB}T^4$ 1 Farad = 9×10^{11} cm 1 ohm = $1/(9 \times 10^{11})$ sec/cm 1 gram calorie = 4.2 Watt-sec or Joules Dietary calories are really kilocalories. 1 kiloton (kT) of TNT is the kinetic energy of 1000 metric tonnes moving at 2.9 km/sec. $[1 \text{ kT} = 10^{12} \text{ gram-cal exactly}]$ Supernova kinetic energy = 10^{51} ergs $1 \text{ AU} = (3/2) \times 10^{13} \text{ cm}$ 1 radian = 2×10^5 arc-seconds 1 square arcsec = 2.4×10^{-11} steradians $1 \text{ pc} = 3 \times 10^{18} \text{ cm}$ $1 \text{ erg} = 6 \times 10^{11} \text{ eV}$ $1 \text{ eV} \sim 12,000 \text{ K}$ $1 \text{ eV} \sim 1.2 \ \mu\text{m}$ $hc/k \approx 1.44 \text{ cm K}$ $1 \text{ Jy} = 10^{-23} \text{ ergs/cm}^2/\text{sec/Hz}$ 1 year $\approx \pi \times 10^7$ seconds 1 Mpc is 1 km/sec for 1000 Gyr One atmosphere or 1 bar = 10^6 dyne/cm² Maximum mass for white dwarfs: $1.4 M_{\odot}$

Typical mass of neutron stars: $1.4 M_{\odot}$

Stellar spectra – from "early" = hot to "late" = cool: Oh Be A Fine Girl Kiss Me Later Tonight Luminosity class – the Roman numeral: "I" = supergiant = low surface gravity

"III" = giant, "V" = dwarf = main sequence star = high surface gravity.

Sp.Type	$\log(L/L_{\odot})$	${ m M/M_{\odot}}$	T_{eff} K
O5V	5.82	40	40,000
B0V	4.66	18	28,000
B5V	2.94	9	15,500
A0V	1.78	3	9900
A5V	1.15	2	8500
F0V	0.88	1.7	7400
F5V	0.54	1.3	6580
G0V	0.15	1.1	6030
G5V	-0.11	0.9	5520
K0V	-0.38	0.8	4900
K5V	-0.78	0.7	4130
M0V	-1.22	0.5	3480
M5V	-1.90	0.2	2800
L0	-3.65		2200
L5	-4.11		1700
T0	-4.57		1300
T5	-5.02		1000

1 magnitude is -4 db

A decibel (db) is a factor of $10^{0.1}$ in power. 0^{th} mag at V $\approx 10^3$ photons/cm²/sec/Å. $m_{bol} = 0$ for 2.5×10^{-5} erg/cm²/sec.

Bands central wavelengths in μ m:

 $\begin{array}{l} U=0.36,\ B=0.44,\ V=0.55,\ R=0.7,\\ I=0.9,\ Z=1.0,\ J=1.25,\ H=1.6,\ K=2.2,\ L=3.5,\ M=4.6,\ N=10,\ Q=20 \end{array}$

AB magnitudes have the same zeropoint flux in F_{ν} (3631 Jy) in all bands.

Johnson or "Vega" magnitudes have zeropoints that follow the spectrum of an A0V star.

 $10^{n/10} = 1.26, 1.6, 2, 2.5, 3.2, 4, 5, 6.3, 8.$