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This note describes our approach to utilizing the stepwedge exposures on the Cak
Spectroheliograph sequence. These exposures begin October 9, 1961 and were continued
until the end of the sequence. The optical format and photographic plate material both
change on October 8, 1962 in that the solar image size increased from 2 inches diameter
to 3.4 inches. The glass plate thickness also decreased as part of the change.

Our approach to interpreting the transparency of the photographic plate material in
terms of an exposure quantity follows ideas presented by de Vaucouleurs!. Our images
including both the solar spectroheliograms and a series of stepwedge exposures are re-
turned from an Eskographics Scanmate F14 operated in a 16G-bit greyscale mode as tiff
files. The original pixels have about 12-bits of significant greyscale information which is
distributed over a range of 0 to 2'¢ — 1. The distribution of pixel values in the original
data is in the form of comb with about 1 in 8 pixels being populated. The images pro-
vided in the fits files have been spatially truncated to record only the average over a 3 x 3
array. These numbers then have close to 16 bits of significance.

Regular scanner calibration scans set the returned data numbers so that points with
no obstruction returns 32767 and points with total obstruction return 0 {we start with
signed 16-bit integers and use only the positive values). We define these data numbers to
be P. If the photographic plate were a linear detector without fog, the plate darkening
would be proportional to the flux of radiation incident during the exposure. In this
case we would be able to identify y = 32767 — P as an exposure parameter £ where
E = I§t with I being an incident flux and ¢ being an exposure time. The fits format
files available from the web site directory MW_SPADP/CaK fits provide images with y as
the array parameter. In fact, the scanner measures the flux transmitted through the
exposed plate. It is common following Hurter and Driffield? to convert the data numbers
to a photographic density D based on the obscuration of the scan beam by the exposed
plate. The ratio of the data number P at a point on the image to the data numnber
Foear with the photographic plate out of the beam is the transmittance and its inverse is
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called the opacity O = Puear/P. Our scanner adjusts the digitization values so that the
maximum 16-bit data number is returned for the clear condition. Since we use signed
integers and include only the positive case we have P, = 32767. The photographic
density D is then taken to be D = log,;(0). Typically a photographic material after
development will reach a maximum density D,,.x when fully exposed. A plot between
log,, £ as the abscissa and D as the ordinate is called the characteristic curve. Typically
there is a range of £ over which D x -ylog,y £ with v being a function of the emulsion
and the development process.

The use of the characteristic curve to interpret photographic material has frequently
been limited to those portions of the exposure where the charactistic curve is linear. The
usual representation of the characteristic curve is to find a quantity called the inertia
which is the exposure offset £y where the plate fog intersects the extension of the straight
line portion of the characteristic curve. However, the discussion by de Vaucouleurs! shows
the advantage of taking the zero point on the ordinate instead of the abscissa so that we

start with a representation:
fam
E = (O — Og)"”

where Oy, is the opacity of the plate fog. For the purpose of describing the properties of
an image qualitatively, the vy parameter is the primary indicator of image contrast and the
plate fog parameter replaces the plate inertia. The above approach produces an extended
range of exposure over which there is an approxiately linear relationship betweeu log(£)
and log(O — Orog). As the exposure nears saturation, the slope of the characteristic curve
decreases until it either becomes flat so that density is no longer a function of exposure.
In extreme cases the curve turns over and enters a state called solarization where the
density is decreased by further exposure. For the Mt. Wilson photographic material, we
have not encountered any cases of solarization so we will ignore this condition. We will,
however, address the question of plate saturation as that is a common condition in the
collection.

We use a formulation of the characteristic curve fitting problem which continues from
the idea of de Vaucouleurs' wherein we alter the photographic density axis by subtracting
an offset corresponding to the plate fog and use a quantity called the opacitance by De
Vaucouleurs which is:

32767 - P Y
w=0—-1 or w= P _32767—3;'

We use a fit of the form:
W= Wiy = al .

We use known relative values of £ from the step wedge exposures:
E; = bIV;

with the values of W; being taken from the Leighton logbook entry shown in figure 1 to
find values of v and a from a least square fit and we have taken wy,; to be the minimum
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Figure 1: This image shows the log book page where Robert Leighton recorded
the transmission factors for the step wedges used for the conversion of plate
transmission factors into plate exposures. We take the values of W, defined in
the text from the columns labeled “Transmission (Violet)”.

of w; from the identified step wedges. The value of b is an arbitrary scale factor that we
choose for convenience.

The step wedge rectangles have been imprinted by exposing the plate to a controlled
lightbox after the solar image is obtained. The location of the step wedge images is fixed
by holding the plate against an angle bracket in the dark room. Due to variations in
the implementation of this exposure, the rectangle nearest the plate edge is not always
identifiable so that the automatic identification of the step wedge strips does not always
find the rectangle corresponding to ¢ = 0 in the above table and we define i; as the
first identifiable rectangle. In order to preserve the same numerical range as the original
image, we pick b as b = w;, /W, so that E;, = w;,. For i = i, the wedge has the greatest
transparency and the rectangle on the plate is most exposed. This scale factor will be
replaced subsequently as part of a fit to a center-to-limb intensity function for the solar
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Figure 2: This figure shows an example of a step wedge image on the left and the
derived fit to the opacitance on the right. In this case, the most heavily exposed step
wedge rectangle was correctly identified and the highest opacitance corresponds to the
darkest part of the image on the bottom. This postscript image only includes eight-bit
significance whereas the actual analysis has been done on the full significance image. The
fit is labeled with the name of the extracted stepwedge file at the top and the determined
value of v inside the upper left corner of the plot.

image. The coeflicients a and w,g are then found using the values of w; corresponding to
each step wedge portion of the exposed plate and fitting the coefficients using the scaled
values of E;, = w; (W;/W;).

The inverse formula needed to calculate a linear image with variable £ in place of the
observed data numbers w is then:

E = (_“ - “’fog)m .
a

Figure 2 shows both a sample step wedge image and the fit of its opacitance to the fitting
formula.

A modification we make concerns the treatment of the data points near the fog limit.
For these, both positive and negative signs of w — wy,g must occur since we have selected
Wiog to be an average of w in these clear plate regions. For a case where 4 = 1, there is
no problem with this result. However, when < differs from 1, we will be unable to take



roots of the negative numbers. The points with w < wgg could be thrown out but that
would bias averages near the fog limit. Instead we the Fortran sign function to write:

E =sign (|w - wrogllj"’ , W= wrog)
where
sign(u,v) = |u| for v>=0 and sign(u,v)=—|u} forv<0.

This approach alters the statistical distribution of the linearized points near w = wig
but preserves the fact that w averages to wpyg in regions of the plate where there is only
plate fog by yielding an average of E' that is zero.
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