The Extreme Universe Extending the Limits of Particle Physics and Astronomy

Rene A. Ong UCLA UC, Irvine Colloquium May 1, 2003

Cosmic Messengers

We learn about the Universe with 4 messengers:

1.	Photons	neutral
2.	Cosmic rays	charged
3.	Neutrinos	neutral
4.	Grav. waves	neutral

most of astronomy important developing infancy

Concentrate here on #1 and #2.

New Wavebands = New Physics

- Before 1940's Astronomy used visible light.
- Since then <u>Other wavebands</u> (radio, IR, X-ray, γ -ray ...) <u>Other particles</u> (CR's, v's ...)

Observations of Crab Nebula and Pulsar

Crab Pulsar

Outline

Introduction

- New messengers and new wavebands
- Producing and detecting extreme energies

The Science

- Known γ-ray sky
- Cosmic Accelerators examples
- (UHECR sky)

Experimental Techniques

- Atmospheric Cherenkov Telescopes
- STACEE Telescope
- Future Projects

Cosmic Ray Spectrum

- Power law enormous range
- Abundant
- Luminous
- Larmor radius r = R/cB $\frac{R}{10^{15} \text{ eV}} \frac{r}{0.3 \text{ pc}}$ $10^{20} \text{ eV} 30 \text{ kpc}$
- <u>HE origin remains</u> <u>largely unknown.</u>

Two Major Difficulties

1. How do we even produce such extreme energies ?

Thermal Universe E < 10 KeV

Non- thermal Universe E > 10 KeV

Accelerator

2. How do we even <u>detect</u> such extreme energies ?

Can only detect by total absorption.

Reaching Extreme Energies

Hillas Plot

Require gyroradius to fit within acceleration region.

Totally hypothetical !

Broad Motivation

Explore a new window of astronomy

- "Extreme Astrophysics": ("bottom up")
 - 1. Test limits of physical law in the most extreme environments.
 - 2. Study non-thermal astrophysical mechanisms.
- Beyond Standard Models ("top down")
 - 1. Search for new particles or new relics.
 - 2. Use particle beams to probe interstellar space.

Detecting γ-rays, CR's

Balloon

Cherenkov Telescopes

Air shower array

Satellite

The Science

Why γ-rays ?

Pros:

- Unlike CR's γ-rays point directly back to their origin.
 <u>Essential</u> for astronomy.
- Unlike v's, γ -rays have v. high interaction prob. (~1). Translates into ~ 10⁶ increase in collection area.
- Photons are ubiquitous in astrophysical situations.
 γ-ray observations connect to rest of astronomy.

Cons:

• Photons can be absorbed by interstellar fields.

GeV y-ray sky

TeV γ-ray sky

- Variety of source types
- All discovered by Cherenkov telescopes

 γ -ray absorption

Pair-production $\gamma\gamma \rightarrow e^+e^-$

"pessimistic"

 \leftarrow

Making a Cosmic Accelerator

Gravitational, EM Energy

Shocks, turbulence, etc.

Radiation Process

Power Sources: Pulsars

Crab Nebula

Produces γ -rays up to 10^{15} eV.

Pulsar- NS rotation

models

Crab Nebula Emission

- Relativistic e⁻ wind
- Synchrotron + Inverse-Compton
- Constrains B field

We understand the Crab !

Eight γ-ray pulsars known.

Supernova Remnants

E0102 AAT, HST, Chandra

- Collapse of massive star
- Remnant expansion powers shock wave
- Particle acceleration via Fermi mechanism

Energy ~ 10^{51} erg Rate ~ 1 / 40 yr (galaxy) L ~ 10^{42} erg/s

SNR <u>could</u> explain the origin of cosmic rays $(E < 10^{15} \text{ eV}).$

Active Galactic Nuclei (AGN)

- 3C273

model

- BH accretion powers jets
- Shock acceleration in jets
- Relativistic electrons, protons

Chandra

"Blazars"

Blazars:

- Powerful, radio-loud objects
- Highly variable at all wavelengths
- Relativistic jets superluminal

- Dramatic variability: time scales < 30 min.
- Large fluxes:
 10¹¹ TeV γ-rays/s hit Earth.

Blazar Spectra

Spectral Energy Distribution

• X-rays & γ-rays, highly correlated

Spectral variation

- Clear spectral roll-over \rightarrow absorption ?
- Spectrum varies with flux level !

Blazar Dynamics

- Origin and properties of Jet
- Doppler factors, geometry, zones
- Nature of beam: e or p
- Source of IC photons
- Magnetic and radiation fields
- • •

New Physics

DARK MATTER

Galactic center

Dark matter:

- New supersymmetric particle
- Decays to γ-rays

QUANTUM GRAVITY

Gravity "foam" in space-time:

- Variation in speed of light.
- Detectable at high energies over very long distances.

Sensitive to $M_{Planck} / 10$?

Summary of Sources

Sources (in order of our level of understanding):

- Pulsars, pulsar nebula
- SNR's
- Other galactic (e.g. starburst galaxies)
- AGN
- Gamma-ray bursts
- Unidentified sources (GeV 150, TeV 1)
- WIMPs & other relic particles
- Primordial black holes
- • •

Experimental Techniques

Wide γ -ray energy range requires multiple techniques.

Detecting HE Particles

Satellite (small) ~ 0.1-10 GeV $\sim 1 \text{ TeV}$ Ϋ́ $\sim 100 \text{ TeV}$ EGRET γ Atmosphere 0.15 m^2 8.5km 0.80 Cerenkov Light Cone Particle Optical Detector Detectors 12**0**m 40,000 m² but no anticoincidence shield! Air Shower Next Atmospheric Array Cherenkov page

EGRET (NASA)

Milagro (New Mexico)

"Standard" Cherenkov Telescope

TATE TO A CONTRACT OF A CONTRA

Imaging PMT Camera 500 Elements

Whipple 10m Reflector (Mt Hopkins, AZ)

Cherenkov Showers

Smooth density of light.

Sharp time of arrival.

Isolating γ**-rays**

Differences between Primaries.

Proton shower movie

γ -ray shower movie

STACEE Low-energy Cherenkov Telescope

National Solar Thermal Test Facility Sandia National Labs – Albuquerque, NM

Solar Tower Atmospheric Cherenkov Effect Expt. (STACEE)

Each heliostat maps \rightarrow single pixel in camera.

STACEE

STACEE Observations & Performance

2002-3 Observations

Threshold: 4 p.e. (~ 50 GeV)

Crab Sensitivity (10s): 25 hrs – w/out hadron rejection 6 hrs – with rejection

100 GeV Performance:
0.16° Angular Resolution
25% Energy Resolution
7,600 m² Effective Area

Future Experiments

In space

GLAST EUSO

VERITAS Project

Arizona, USA

VERITAS Reconstruction

- Stereo reconstruction
- Excellent angular and energy resolution

AGN Sensitivity

Whipple

VERITAS (2005)

VERITAS Timeline

1997	First Proposal
1998-9	SAGENAP, Decadal Survey Presentations
	Strong endorsements
2001	OMB Announces Smithsonian re-organization.
2002	Forest Service turns down site request
	NSF & DOE learn to work together
2003	Prototype telescope progress

Proposed Site Mt. Hopkins, AZ

Camera & Electronics

Camera Assembly

Electronics in Trailer

Flash-ADCs

Completed FADC Board 10 chans, 9U VME

Cherenkov Waveform

The Competition

HESS telescope (Namibia)

HESS camera

GLAST – Satellite Telescope

GLAST LAT Instrument:

- Si tracker
- CsI calorimeter
- Anti-coincidence veto

Extensive LAT Catalog

Sky map from 1 year survey

Launch in 2006.

Summary

- High energy particle astrophysics: emerging, exciting area.
- Research is experimentally driven probing limits of known astrophysics and possibly beyond standard models.
- For γ-rays: growing catalog of sources & phenomena
- (For cosmic rays: future experiments will resolve a very compelling problem.)

"The real voyage of discovery consists, not in seeking new landscapes, but in having new eyes." Marcel Proust (1871-1922)

Giant Air Showers $(>10^{20} \text{ eV})$

UHECR Detection

UHECR Detectors - AGASA

- 100 km² surface array
- Honshu, Japan

Charged particle detectors

UHECR Detectors - Fly's Eye

HiRes mirror sheds Dugway, UT

Nitrogen fluorescence technique

UHECR Sky Map

Equatorial Coordinates

AGASA 59 evts > 4×10^{19} eV Possible clustering – but not compelling.

UHECR Spectrum - AGASA

AGASA: ~ 11 events above $10^{20} eV!!!$

UHECR Spectrum – Fly's Eye HiRes

AGASA vs HiRes

Clear inconsistency – Energy calibration problem?

Pierre Auger Project

Pierre Auger Project

Air Showers From Space

Energy Spectrum - Flattened

Capabilities of VERITAS

	VERITAS-4 Performance	
Operating Conditions	4 x 112 m ² mirrors	
	Trigger (tel): 3 pixels > 5.6 pe	
	Trigger (array): 3 of 4 telescopes	
Peak Energy	110 GeV	
Crab Nebula Rate	35 gamma rays per minute	
<u>Energy</u>	Collecting area Angular Res Energy Res	
100 GeV	3.3 x10 ⁴ m ² 8.6 arc-min < 25%	
1 TeV	$2.2 \times 10^5 \mathrm{m}^2$ 4.3 arc-min < 15 %	
10 TeV	3.0x10⁵ m² 1.8 arc-min < 15%	
Flux sensitivity (50hr)		
10 TeV	1.4x10 ⁻¹¹ erg cm ⁻² s ⁻¹	
1 TeV	1.4x10 ⁻¹² erg cm ⁻² s ⁻¹	
100 GeV	$3.7 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$	

STACEE Showers

Monte Carlo 100 GeV gammas

Zenith data showers

STACEE Shower Reconstruction

Simulated Vertical Gamma Rays

Core finding with pulse height info (right) improves energy and angular resolution Background rejection quality factor of 2.5 to 3.5

Remnant SN1006

TeV g-rays

γ-ray data (CANGAROO) X-ray data contours

Evidence for non-thermal acceleration of <u>electrons</u>. Very complicated!

Understand SNR's reasonably well – no direct evidence for CR's.

High-energy v Sky

