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Cosmic Acceleration: RecapCosmic Acceleration: Recap

To build a HE cosmic accelerator, we need the following parts:

1. Injection

2.  Power Source

3. Acceleration

Emission

4. Propagation
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So Far … ~10So Far … ~1015 15 eVeV

General Picture: bulk of CR’s are produced in a number of 
(discrete) galactic sources (SN’s?) that fill the galaxy with 
energetic particles.  This seems fine at “low” energy (< 1015 eV), 
but …

• Real difficulty in getting to much higher energies using
conventional astrophysics.

• Variety of models proposed seem capable of reaching the
range 1018 – 1019 eV, but they all stretch what know…
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Reaching Higher EnergiesReaching Higher Energies

Some possibilities:

Pulsars – like Crab, but accelerating iron.
Magnetars – pulsar-like sources with B ~ 1015 G.
Induction from spinning (supermassive) black holes.

Multiple SN’s, or a SN explosion into a strong wind.
Galactic shock waves.
AGN  (radio jet termination, quasar jets).
Gamma-ray bursts – relativistic bulk motion.

Great deal of speculation – no clear consensus.  Need more and
better data at energies E > 1018 eV.
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Magnetic ConfinementMagnetic Confinement

“Hillas Plot”

Minimum size of B field to
contain particles being
accelerated.

Achievable energy:

E [EeV] ~  Z  R [kpc] B [µG]
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4. Propagation4. Propagation

How particles propagate depends on their type and energy.

Particle Deflected ? Interactions

Protons yes ISM  (~ 10 g/cm2) - spallation  
Nuclei CMBR    p γcmbr ∆+ π’s

Gamma rays no Intergalactic radiation  
γ γ e+ e- (CMBR, CIR, etc.)  

Neutrinos no ~ None
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GammaGamma--Ray PropagationRay Propagation

Gamma-rays will pair-produce off intergalactic radiation fields.

• The photon density of the 
CMBR is well known, but at 
other λ, it is more poorly 
understood.

• Would like to turn this around 
to use absorption spectra to 
measure the CIR (more on this 
later).

IR

O

UV

Poorly understood
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GammaGamma--Ray HorizonRay Horizon

For nir = density of cosmic IR,
the optical depth is:

τ ~   nir σγγ D (z)

For   E = (1+z)Eo γ-ray energy
ε = (1+z)εo IR energy

threshold for absorption is:
(ε E)  >  2 (mec2)2

Allows us to calculate the γ-ray 
horizon.  Universe is transparent 
below  E ~ 1 GeV.

TeV AGN

HorizonGRB
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Cosmic Ray HorizonCosmic Ray Horizon
Soon after the discovery of the CMBR, it was pointed out that protons
would be absorbed while traversing intergalactic space.

“GZK Cut-off” P + γcmb→ ∆+ → p + π0

→ n + π +

∆-resonance

multi-pions

< 1 %
Universe

Cross section
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KNOWN HEKNOWN HE
ASTROPHYSICAL ASTROPHYSICAL 

SOURCESSOURCES
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GammaGamma--Ray BurstsRay Bursts

• Isotropic distribution.
• ~ 1 burst /day.
• 0.01 s hrs.
• Several seen to GeV.

• Complicated & 
unpredictable profiles.
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GRB PopulationsGRB Populations

• Two populations – different origins?

Time

Hardness
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Afterglows DetectedAfterglows Detected

• 1997: Detection of X-ray afterglow optical counterparts.
redshifts.
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GRB ParametersGRB Parameters
Some general GRB parameters:

Luminosities are high ( > 1051 ergs) – how do the g-rays 
escape in the first place?  (“Compactness” problem).
Sources are highly beamed  ( Γ > 100).

Emission is beamed into
relatively small opening  angle.   
Correcting for this angle 
reduces spread in luminosity.

4πD2F=

2πθ2D2F=

Sari
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General GRB PictureGeneral GRB Picture

Many models and views!  But, “general” wisdom is:

Compact Source:    NS-NS merger, WD collapse, hypernova

Relativistic Energy:  L ~ 1051 ergs, size R < 107 cm

KE Internal E Radiation:  External and/or internal shocks.

∆∆

γ>100

ISM

γ2>γ1
γ1

External:

Afterglow?

Internal:

“GRB”?
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GRB’s GRB’s as Cosmic Acceleratorsas Cosmic Accelerators

GRB’s are very attractive possibilities for HE cosmic 
acceleration:

Remarkable luminosities – brightest objects in Universe.

Beaming angles many unobserved GRB’s (1000 /day ?)

Non-thermal emission observed  (synchrotron, polarization).
meaning that particles are accelerated relativistically.

Key thing – we must detect them with HE γ-rays or ν’s.
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GeV GeV γγ--ray Skyray Sky

Pulsar

GRB

AGN

SNR

Radio 
Galaxy

Cosmic Rays !

• ~ 250 HE point sources, most unidentified.
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TeV TeV γγ--ray Skyray Sky

• Pulsars, SNR’s, AGN, Starburst galaxy …
• All detected by Cherenkov telescopes.

1st Unknown
Source !

Stay tuned …talks by 
Krennrich, Tanimori
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HighHigh--Quality DataQuality Data

Inverse Compton

STACEE

We are starting to get a detailed understanding of the
workings of these HE sources …

Crab:

• Model of synchrotron
and IC components.

• Constrains B field in 
Nebula and the degree 
of equipartition.

Synchrotron
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SN RemnantsSN Remnants

• 3 SNR’s have been reportedly detected (??), but no 
“smoking gun” found for proton (CR) acceleration.

RX J1713

SN1006
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AGN Spectra and VariabilityAGN Spectra and Variability

synchrotron IC

• Detailed spectral and variability measurements 
confront the models.

• Spectral variability now clearly detected.

Mrk 501 SED

Mrk 421 Variability

Note: tiny error bars with clean sample of
> 25,000 γ-rays!
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HE HE νν SkySky

• No sources yet.
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νν Limits (Point Source)Limits (Point Source)

• AMANDA-II 2000 data:  1555 ν events.
• Flux limits within ~ factor of five of highest measured 

γ-ray flux.



Rene A. Ong SLAC Summer Institute  2003 Page 24

νν Limits (Diffuse)Limits (Diffuse)

Editorial: 
Models are optimistic.

New data
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> 10> 101919 eV eV SkySky

• Some evidence for clustering – not compelling.
• Low statistics !
• Should be much clearer in future.
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(SOME) (SOME) 
CONNECTIONS TOCONNECTIONS TO

PARTICLE PHYSICSPARTICLE PHYSICS
& COSMOLOGY& COSMOLOGY



Rene A. Ong SLAC Summer Institute  2003 Page 27

TopicsTopics

Selected topics:

• Using γ-rays to measure diffuse radiation fields.
• SUSY & DM detection.
• “GZK Neutrinos”.
• “Top-down” sources of E > 1020 eV particles.

• (Using g-rays to probe space-time/quantum gravity ..
Testing fund. law at HE and long dist. scales).

• (Primordial black holes).

Much of this was nicely covered by John Ellis 
last Monday.  Jonathan Feng will cover more.
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Probing Intergalactic SpaceProbing Intergalactic Space

• 0.1 – 10 TeV γ-rays are
absorbed by intergalactic 
radiation fields (IR/O/UV).

• These fields measure the 
total star/dust luminosity of 
Universe, but are poorly 
known.

• The γ-ray measurements 
have provided some of the 
best constraints to date.

Forward-evolution model.
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Evidence for AbsorptionEvidence for Absorption

• Some evidence for absorption 
from AGN already seen.

• Mrk 421/501 (z=0.03) see 
relatively little effect.

• More pronounced in H1426 at 
z=0.129.  Very soft spectrum.

HEGRA

Need more sources at higher z.
Lower energy, better sensitivity.

STACEE telescope (New Mexico)
Fully operational at E=50-200 GeV.
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SUSY DetectionSUSY Detection

γ

γ

X 

X 

Galactic center

Neutralino 
Annihilation

• Neutralinos can have 
enhanced density in GC.

• Annihilate to give g-rays with 
Eγ > 50 GeV.

• Prospects depend strongly 
on the actual density.

GLAST sensitivity

Flux ~  ( ρ / Mx )2 σ v
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ν ν Detection of SUSYDetection of SUSY

νµ

µ
AMANDA

Earth

• WIMP’s can get trapped in
the center of the Sun/Earth.

• Annihilate neutrinos.
• Sensitive to spin-dependent

terms.
• AM-II results - eliminate the more

extreme models.



Rene A. Ong SLAC Summer Institute  2003 Page 32

Has DM Already Been Detected?Has DM Already Been Detected?
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More on More on γγ--raysrays

• Other good candidates 
include nearby galaxies with 
high mass/light: Draco, Ursa 
Minor, M32, M33.

• These are being pursued.

Core of Draco Dwarf

• Whipple result on GC
• Excess γ-ray map from 

2000-2003 data (16 hrs).

STAY TUNED !

SGR A*
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GZK NeutrinosGZK Neutrinos

We expect neutrinos produced by the cascade particles in the
GZK mechanism:   “GZK Neutrinos”.

Process:    p γcmbr ∆ N π+/− ν’s

Flux will depend on:
• Distribution of sources of UHECR’s.

(Galactic sources =  fewer GZK neutrinos)
• Upper end of the primary CR spectrum.

(The higher, the better).

Detection of this diffuse flux would confirm our standard picturDetection of this diffuse flux would confirm our standard picturee
of the of the cutoffcutoff.                 .                 

Guaranteed ? Guaranteed ? 
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GZK Neutrino EstimatesGZK Neutrino Estimates

Predicted flux range.

Standard Model

µ-Black Holes

Strings

Eν (TeV)

σ
(m

b)

Exciting possible enhancements.
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“Top Down” Sources“Top Down” Sources

There has been a cottage industry of folks working on ways to 
connect the highest-energy particles to new physics.  

Ideas fall broadly into several camps:

• Radiation from topological defects.
• Decays of (massive) metastable relic particles.

(e.g. heavy neutrinos that decay in the halo.
• Exotic neutrino interactions.

(e.g. anomolous cross-sections, “Z-bursts”)
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Topological DefectsTopological Defects
General Picture:

1.    GUT Theories: 
• Unify forces at higher energy scale.  Bigger gauge symmetry with

gauge boson X.
• X particles mediate q l decay. Proton decay limits mx > 1015 GeV.
• Allows baryons to freeze out earlier higher density.

2.    Phase transitions:
• Associated with symmetry breaking – have certainly taken place in 

early Universe.
• If transition is not “perfect” – leads to topological defects (Kibble).

3.   Topological Defects (TD’s):
• Various types:  Monopoles, Cosmic strings, domain walls (large).
• Monopoles are a problem (inflated away).  Strings might exist and 

decay to X ql UHE CR’s.
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TD PredictionsTD Predictions
SIGL

γ−rays
ν

pUHECR’s are
Photons !

Copious Neutrinos.
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Metastable Superheavy Metastable Superheavy RelicsRelics
Very interesting possibility.  General picture:

MSRP’s: 
• Mass M > 1012 GeV.
• Long, but finite lifetime.
• Decay via instanton effects – violation of some conserved quantum #.
• Variety of candidates and scenarios.

Properties:
• Relation between lifetime and abundances must be satisfied.
• Lifetime ~ 1010 yr, abundance is relatively small  Ω h2 ~ 3 x 10-12.
• Behaves like CDM – cluster in galactic halo – contribution there exceeds

the extragalactic contribution (factor of 10?).

• Expect almost total suppression of GKZ effect !
• Not bound by EGRET γ-ray bkgnd limit.
• Possible anisotropy due to our location in MW galaxy.
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Z Z -- BurstsBursts

“Z-bursts” : Very creative explanation
for the > 1020 eV particles.

ν (E>ZeV) + ν2k Zo γ’s,π’s, N’s

ZeV ν

Weiler

• Explains UHECR origin. High γ/p.
• MFP is just about right.
• Detect relic neutrinos.
• Consistent with ∆(m) neutrinos.

“Only” catch:
We need very powerful sources of ZeV
neutrinos distributed throughout Universe.
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The Next 5 YearsThe Next 5 Years

There is a remarkable range of phenomena associated with HE particles in
the Universe. In the next 5-10 years, we hope to answer some of the major
questions and make new, unexpected discoveries.  Here, we highlight some
of the experimental efforts.

An incomplete list of new projects:

• Gamma-rays: CANGAROO, GLAST, HESS, MAGIC, SWIFT,
VERITAS

• Neutrinos: ANTARES, ANITA, IceCube, NEMO, NESTOR
• Cosmic-rays: Auger, EUSO, OWL, Telescope Array

(Underlined = balloon/space based.
Above 1017eV, detectors typically have sensitivity to multiple messengers).
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Future ExperimentsFuture Experiments

Auger (S)

VERITAS

HESS

ANTARES/
NESTOR/
NEMO

IceCube
ANITA

CR experiments
γ-ray telescopes
Neutrino telescopes

CANGAROO

MAGIC
Tel. Array
Auger (N)

SWIFT, GLAST
EUSO, OWL

In space
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GLASTGLAST
GLAST Large Area 
Telescope (LAT)

GLAST Burst 
Monitor     (GBM)

e
+

e–

γ

LAT

Many more sources, better localized.
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VERITASVERITAS

• Seven 12m reflectors.
• Site in southern Arizona.
• 5-10 sensitivity improvement.
• 6’ ang. resolution.
• Four telescopes in 2006. 500 MHz FADC

AGN Signal
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VERITAS & HESSVERITAS & HESS

First 12 reflector & Electroncs

VERITAS is fully 
underway. (Finally)

HESS (Namibia)
Fully operational in 2004.
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Auger ProjectAuger Project

• Southern site in Argentina
• 1600 water detect., 4 fluorescence.
• > 3,000 km2.
• Construction complete in 2006.

50 km

Surface detector in place.
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Auger ProjectAuger Project

Fluoresence
detector

Hybrid
Events

Fluoresence 

Surface 
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ANITAANITA

ANtarctic Impulsve Transient Antenna

• Neutrino detection via Cherenkov radiation in South Pole ice.
• Enormous collection area.
• Intensity gradient, timing, polarimetry used to reconstruction ν shower.
• Sensitive to GZK neutrinos.

ANITA
Gondola &

Payload

Antenna array
Solar 
Panels600 km
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ANITAANITA

ν
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So, what are the >10So, what are the >102020 eV eV events?events?

• Statistics are insufficient.
• Energy calibration an issue.
• Auger will greatly improve.

Personal perspective:
• Spectrum continues.
• Relatively local.
• Larger B fields.
• Astrophysical, but not

understood (NEW).

Crucial to probe even higher 
in energy!
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SummarySummary

• Studying very HE particles provides unique tests of the limits of 
physical laws.

• Probing astrophysics in regimes not well understood.  Deep 
mysteries to be solved.

• Detection techniques are innovative and derive partially from 
particle physics.

• Great potential for discovery of physics beyond our standard 
models.  (But, this physics is not yet required).

“The real voyage of discovery consists, not in seeking new 
landscapes, but in having new eyes.”

Marcel Proust (1871-1922)


