The Extreme Universe Probing the Limits of Particle Physics and Astronomy

Rene A. Ong University of California, Los Angeles

Outline

- Big Picture
 - Cosmic messengers & observables
 - Scientific motivation
 - Experimental techniques
- Recent excitement
 - 1. (Gamma-ray bursts)
 - 2. Extragalactic TeV sources
 - 3. Ultrahigh energy cosmic rays
- Future

Cosmic Messengers

We learn about the universe from four messengers:

1.	Photons	neutral	basis for most of astronomy
2.	Cosmic rays	charged	important in our galaxy
3.	Neutrinos	weakly inter.	only detection – SN1987A
4.	Grav. waves	neutral	still in infancy

To fully understand astrophysical sources we need information from multiple messengers.This talk concentrates on 1 & 2 at <u>high energies</u>.

Observables

- Particle type
- Energy spectrum
- Direction
- Variability
- (Polarization)

- γ, CR, ν, ...

- physics
- astronomy

High Energies

 $GeV = 10^9 eV$ $TeV = 10^{12} eV$ $PeV = 10^{15} eV$ $EeV = 10^{18} eV$ $ZeV = 10^{21} eV$

Space-based

Ground-based

Diffuse Photon Spectrum

Cosmic Ray Spectrum

- Power law spectrum
- Abundant $\rho \sim 1 \ eV \ / \ cm^3$
- Luminous $L > 10^{40} \text{ erg/s}$
- Larmor radius r = R/cB $\frac{R}{10^{15} \text{ eV}} \frac{r}{0.3 \text{ pc}}$ $10^{20} \text{ eV} 30 \text{ kpc}$
- <u>HE origin remains</u> <u>completely unknown.</u>

GeV γ-ray Sky Map

GeV y-ray Sky Map

+ GRBs

UHECR Sky Map

Equatorial Coordinates

AGASA 59 evts > 4 x 10^{19} eV

Scientific Motivation

- Explore a new window of astronomy
- "Extreme Astrophysics":
 - 1. Test limits of physical law using most extreme environments.
 - 2. Probe high energy, non-thermal astrophysical mechanisms.
- Probe beyond standard models of particle physics and cosmology:
 - 1. Use "particle beams" across interstellar space.
 - 2. Search for new particles or new relics from the Big Bang.

Examples from these various topics . . .

Extreme Astrophysics

High energy astrophysical sources exist! How do we make such sources?

Three ingredients:

- 1. Power source -
- 2. Acceleration -
- 3. Emission -

electromagnetic, gravitational shock acceleration (Fermi) particle interaction and decay

Reaching Very High Energies

Hillas plot

Require gyroradius to fit within acceleration region.

Power Sources: Pulsars

Crab Nebula

Produces γ -rays up to 10^{15} eV.

Pulsar- NS rotation

models

Supernova Remnants

E0102 AAT, HST, Chandra

- Collapse of massive star
- Remnant expansion powers shock wave
- Particle acceleration via Fermi mechanism

Energy ~ 10^{51} erg Rate ~ 1 / 30 yr (galaxy) L ~ 10^{42} erg/s

> $L_{cr} = \epsilon L$ = 10⁴⁰ - 10⁴¹ erg/s

SNR could explain the origin of cosmic rays $(E < 10^{15} \text{ eV}).$

Active Galactic Nuclei (AGN)

model

Chandra

Emission mechanisms

- BH accretion powers jets
- Shock acceleration in jets
- Relativistic electrons, protons

Inv. Compton: $e\gamma \rightarrow e\gamma$ Decay: $\pi^{o} \rightarrow \gamma\gamma$ $\pi^{+} \rightarrow \nu$

Beyond the Standard models

1. Using "particle beams" across interstellar space

- Absorption features in spectra of distant sources:
 - Absorption of HE γ-rays by pair-production.
 More on this later.
 - Cutoff of extragalactic cosmic rays by CMBR (GZK cutoff).
- Dispersion in time of flight of arrival particles:
 - Quantum gravity effects energy dependent c time dispersion of photons from distant source (AGN, GRB).
 - Dispersion in arrival time of neutrinos v mass limit.

Beyond the Standard models

- 2. New Particles and Relics
 - Supersymmetry:
 - Neutralinos at galactic center.
 - S^o explain origin of UHECR.
 - Primordial black holes $M \sim 10^{15} \text{ g}$
 - Topological defects

• • •

• Cosmic strings, domain walls $M_X \sim 10^{15}$ GeV.

SUSY – Neutralino annihilation

Annihilation:

 γ -ray detectors have sensitivity to neutralinos in the important energy range.

Annihilation at Galactic Center

Experimental Techniques

Wide energy range requires multiple techniques

Detecting HE Particles

EGRET

CASA-MIA (Dugway, UT)

Atmospheric Cherenkov Technique

Cherenkov Light Pool

Whipple 10m Reflector (Mt Hopkins, AZ)

Cherenkov Pulses

Pulse ~ 5 nsec

Recent Excitement

1. (Gamma-ray bursts)

2. Extragalactic sources of TeV photons

- Detection of luminous "blazars"
- 20-200 GeV "terra incognita"
- Development of STACEE project
- 3. 10^{20} eV cosmic rays

Extragalactic TeV sources

- 1992 Detection of TeV photons from the active galaxy Mrk 421 (z=0.031).
- 1994 First major variability detected by TeV telescopes.
- 1997 Dramatic flaring detected in second source Mrk 501 (z=0.033).
- 1998 Additional sources detected.
- to Multi-wavelength studies.
- 2001 Dramatic flaring of Mrk 421.

These powerful objects are fascinating and enigmatic !

"Blazars"

Blazars are a type of AGN with some key features:

- Powerful, radio-loud
- Highly variable at all wavelengths
- Relativistic jets superluminal
- Power peaks in X-rays, γ-rays

TeV image of Mrk 421

Blazars – powerful, variable sources

- Dramatic variability: time scales < 30 min.
- Large fluxes: 10¹¹ TeV γ-rays / sec to earth.
- Energies > 10 TeV.

Blazar Energy Distribution

- Double peaked: power is at HE.
- X-rays & γ-rays highly correlated
- Model components: Synchrotron Inverse Compton

Key Questions about Blazars

- How do blazars really work?
 - must explain: fluxes, variability, correlations ...
- Why don't we see more of them at TeV energies?
 >70 sources at GeV, but only handful at TeV. Is absorption instrinsic or intergalactic ?
- Are blazars sources of UHECRs or v ?

Blazar Dynamics

General picture

- Origin and properties of Jet
 - Doppler boost δ , geometry
- Nature of beam: e or p
- Source of IC photons
- Emission zones
- Magnetic and radiation fields
- . . .

The extragalactic background light

- Cosmic EBL produced by normal star formation and evolution
- HE γ -rays from AGN will interact with EBL via pair production: $\gamma \gamma \rightarrow e^+ e^-$
- Can determine EBL density from optical depth:

$$\begin{array}{rcl} \tau & \sim & n_{\ EBL} \ \sigma_{\gamma\gamma} \ D \\ & \sim & n_{\ EBL} \ \sigma_{\gamma\gamma} \ / \ H_o \end{array}$$

 $n_{\,\rm EBL}$ depends on early astrophysics and cosmology

EBL Absorption of γ -rays

20-200 GeV "Terra Incognita"

- Window 20-200 GeV not explored by any experiment:
 - Above range of satellite instruments.
 - Below range of Cherenkov telescopes.
- Energy threshold of Cherenkov telescopes is set S/N Can achieve a low threshold by using a <u>large mirror area.</u>
- Large mirrors exist at Solar research facilities (e.g. Sandia)

STACEE Project

Solar Tower Atmospheric Cherenkov Effect Experiment

National Solar Thermal Test Facility Sandia National Labs

STACEE Concept

Primary and Secondary Mirrors

62 STACEE Heliostats Total mirror area = $2,400 \text{ m}^2$

Secondary mirrors on Tower

Heliostat Field

Tower

Secondary mirror and camera

Electronics Trigger & FADCs

STACEE Timeline

1997	Start construction		
1999	32-heliostats	E= 190 GeV	Detect Crab Nebula 7σ
2001	48-heliostats	E= 110 GeV	Detect Mrk 421 flares $\sim 15\sigma$
	64-heliostats	E=80 GeV	Operational
Collaboration:			
Alberta:		D. Gingrich	
	U. California:	L. Boone, J. Carson, R. Ong, D. Williams, J. Wong, J. Zweerink	
(Case Western:	C. Covault, J. Hinton, R. Scalzo	
(Columbia: D. Bramel, R. Mukherjee		
McGill U:		P. Fortin, D. Hanna, C. Mueller, K. Ragan	

Mrk 421 Light Curve (2001)

STACEE-48 E=110 GeV

Comparison with Whipple

• Correlated fluxes

• STACEE ~ 2 times Whipple in flux

Whipple Flux

Projected Sensitivity

Spectra from distant AGN (z=0.94)

Future: γ-rays

- New generation of telescopes
 space: SWIFT, GLAST
 ground: Cherenkov Tel. Arrays –VERITAS
- Big gains in:
 - Source sensitivity (10 mCrab)
 - Angular and energy resolution
 - Energy coverage
- Expect number of HE sources to increase substantially.

GLAST

GLAST Instrument:

- Si tracker
- CsI calorimeter
- Anti-coincidence veto

Extensive LAT Catalog

Sky map from 1 year survey

Launch in 2006.

Mt. Hopkins, AZ

VERITAS - Design

Telescope Array

VERITAS - Reconstruction

- Stereo reconstruction
- Excellent angular and energy resolution

AGN Sensitivity

Summary

- High energy particle astrophysics is an emerging, exciting area.
- Research is experimentally driven probing limits of known astrophysics and possibly beyond standard models.
- For γ-rays: GRBs and AGN are the most powerful astrophysical objects known.

STACEE – project to explore region 20-200 GeV.

• For cosmic rays: future experiments will resolve a very compelling problem.

UHECR Detectors - Fly's Eye

HiRes mirror sheds Dugway, UT

Nitrogen fluorescence technique

UHECR Detectors - AGASA

- 100 km² surface array
- Honshu, Japan

Charged particle detectors

Comparison of Aperture

• Possible systematic errors ?

Ultrahigh Energy Spectrum

AGASA 9 yrs of data Fly's Eye HiRes 4 yrs of mono data

Similar exposure – much different flux above 6 x 10^{19} eV.

Directional correlations (AGASA)

Angular correlation $\sim 5\sigma$ effect

UHECR Questions

- Do Super-GZK events really exist?
 - discrepancy between AGASA and Fly's Eye.
- Do the events cluster on the sky?
 - evidence from AGASA suggests this.
 - astrophysical sources.
- What is the composition of the events?
 - contradictory information from the experiments.

Clearly need a new generation of more powerful experiments!

Future: UHECRs

Aperture . . .

Pierre Auger Project

Mendoza, Argentina

Hybrid Array

UHECRs from Space

General concept

EUSO on ISS

Gamma Ray Bursts

Gamma Ray Bursts 30 Year Old Mystery !

BATSE ~ 1 GRB/day ISOTROPC

GRB Counterparts

1997 Major Breakthrough BEPPO/SAX provides accurate positions Redshifts for dozens of afterglows determined

Before

Keck GRB 981214 Z= 3.412

"Afterglow"

GRB 990123

Detection of GRB in process !

GRB Enigmas

- Mechanisms not fully understood "fireball" models
 - Hypernova "collapsars"
 - NS-NS collisions
- Types of GRB not understood Counterparts detected for long, energetic bursts

Short bursts may have different origin!

Other Slides

TeV Sky Map

\sim dozen sources

Cherenkov Camera

Imaging PMT Camera 500 Elements

Proton Primary

 γ - ray

Flaring of Mrk 421 in 2001

Whipple

Mrk 421, 501 Spectra

Difficult to measure absorption:

Wide dynamic range Control of systematics

Still an open question.

HEGRA

STACEE-48 Area & Threshold

Energy Threshold

E^{-2.3} spectrum

VERITAS

Advanced hardware

Multi-level trigger 500 MHz FADCs High speed DAQ

VERITAS Groups

GLAST - LAT

Hardware from particle physics and space physics fields

Partnership: DOE NASA International

Neutrino Spectra

• Completely hypothetical !