The Extreme Universe

(The Limits of Particle Physics and Astronomy)

Rene A. Ong University of California, Los Angeles

Brown University Colloquium 1 March 2004

OUTLINE

- Introduction
 - Messengers, energy scales, & questions.
- Detecting Very High Energy (VHE) particles
- Physics: Origin of VHE particles
 - Power sources & particle acceleration.
 - Probing particle physics and cosmology
- Astrophysics: Sources and what not
 - γ -ray and ν skies at TeV energies.
 - Active galaxies and dark matter.
- Future

Cosmic Messengers

We know about the Universe primarily from:

	<u>Particles</u>	<u>charge</u>	<u>status</u>
1.	Photons	neutral	crucial
2.	Cosmic Rays	charged	v. important
3.	Neutrinos	neutral	developing
4.	Grav. Waves	neutral	infancy

5. (New stable particle)

Energy Scales

Cosmic Ray Spectrum

- Total,diffuse spectrum individual species not resolved.
- Power-law spectrum
 E⁻³ differential.
- E > 10²⁰ eV.
- Energy density
 ~ 1 eV / cm³.
- What about gammas and neutrinos ?

At the Highest Energies

Particles E > 10²⁰ eV are <u>not</u> expected:

- 1. Very hard to accelerate to these energies.
- 2. Nuclei cannot travel beyond 100 Mpc $p \gamma_{cmbr} \rightarrow \Delta^+ \rightarrow \pi$'s

What are these particles and where do they come from ??

HE Implications

Phenomenological

Energy scale is reached by either:

- 1. Non-thermal & radiative processes (Astrophysics).
- 2. Decays, interactions from higher mass scale (Particle Physics).

Experimental

- 1. Particles are detected by total absorption.
- We are required to measure tiny fluxes.
 (< 1 /km²/century at highest energies).

Rene A. Ong

Magnetic Fields

- 1. Galaxies have magnetic fields.
 - Protons and nuclei will be deflected by the B ~ 3 μG galactic field.
 Larmor radius r = R/cB

M51

- 2. Intergalactic fields may also be significant
 - Clusters (e.g. Coma) have field strengths B ~ 0.1 2 μG, perhaps extending out along sheets and filaments.

Charged CR directions will be scrambled by B fields.

We need neutral particles to do astronomy $\rightarrow \gamma, \nu$

Rene A. Ong

Questions

- 1. What is the origin of this diffuse flux of cosmic-ray particles?
 - Abundant, extremely energetic particles. Sources must be both powerful and renewable.
 - At highest energies we have no understanding of how they can be produced.
- 2. Do these particles provide clues about the early Universe or about the physics at higher mass scales?
- 3. What can we learn from Astronomy at very high energies?
 - Gamma-rays, v's point directly back to sites of extreme particle acceleration or unexpected phenomena.
 - VHE particles can be used to probe radiation fields and the fabric of space-time.

DETECTION OF VHE/UHE PARTICLES

Experimental Techniques

Rene A. Ong

Page 11

EGRET (CGRO)

- Flew 1991-2000.
- Very successful mission.

EGRET

- Energy range 30 MeV 20 GeV.
- Small collection area.
- Detected ~ 300 sources..

Cherenkov Telescopes

Area = $10^4 - 10^5 \text{ m}^2$ ~60 optical photons/m²/TeV

Cherenkov image

ns electronics

Isolating γ**-rays**

Rejection

Factor ~ 300

(single tel)

90

Brown Colloquium 1 Mar 2004

Mrk 421 2001

cosn

70

alpha (degree)

50

ORIGIN OF HE PARTICLES

Astrophysical Origins

To build a HE cosmic accelerator, we need the following parts:

Power Sources

Broadly speaking, there are two types of sources:

- 1. Electromagnetic
 - Rotating highly magnetized object (Pulsar)
- 2. Gravitational
 - Core collapse of a massive star SN and its remnant
 - Gamma-ray Bursts
 - Accretion onto a compact object (BH, NS, etc.)
 - other...

Somewhat intertwined – eventually acceleration is done electromagnetically, and often both are involved.

Power Source: Pulsar

Supernova Remnant

SNR E102

- Collapse of massive star.
- Outer layers ejected with v ~ 1-2 x 10⁴ km/s.
- Shell expands and <u>shock front</u> forms as it sweeps up material from ISM.
- In ~ 10⁴ yrs, blast wave begins to deccelerate (Sedov phase) and slowly dissipate.

Active Galactic Nuclei (AGN)

- AGN are likely powered by accretion onto BH's of 10⁶ 10⁹ solar masses.
- Matter falling in piles up in rotating accretion disk. Released energy powers jets of relativistic outflow.
- Leading candidate as a source of UHE cosmic rays and neutrinos.

Movie

Fermi Acceleration

A variety of mechanisms have been proposed to explain how HE particles are accelerated in astrophysical environments.

Leading contender: Fermi acceleration.

- Shock moves rapidly through ISM.
- HE particles move back and forth across shock, gaining energy.
 <u>First-order</u> Fermi acceleration ~(V/c).
- Naturally get power-law spectrum.

Applied to SN remnants, acceleration time ~ 10^4 yrs, we reach a limiting energy:

 $E_{max} < Z \times 10^{14} eV$

Very hard to go higher !

Beyond the Standard Models

Selected topics:

- SUSY & Dark Matter.
- Probing space-time at high energies.

- ("GZK Neutrinos".)
- ("Top-down" sources of E > 10²⁰ eV particles.)
- (Primordial black holes).
- (Cosmic IR radiation).

Dark Matter & SUSY

Galactic Center

- Neutralinos can have enhanced density in GC.
- Annihilate to give γ -rays at GeV and TeV energies.
- Prospects depend strongly on the actual density.

Probing Intergalactic Space-Time

Quantum gravity:

- Discrete space-time "foam"
- Effects propagation of light

AGN Flare Whipple 1996

• Probe to M_{plank} / 100.

VHE γ **-ray ASTRONOMY**

(A new window)

Rene A. Ong

Brown Colloquium 1 Mar 2004

Page 26

GeV γ-ray Sky

• ~ 250 HE point sources, most unidentified.

TeV γ-ray Sky

VHE Gamma-Ray Sources

- Pulsars, SNR's, AGN, Starburst galaxy ...
- All detected by Cherenkov telescopes.

Rene A. Ong

No sources yet !

GeV and TeV AGN: Blazars

Blazars:

- Powerful, radio-loud objects.
- Highly variable at all wavelengths.
- Jets superluminal motion.
- Produce GeV/TeV beams.

AGN Variability

 Shortest variations probe to within factor of 10 of the Schwarzchild radius !

Correlation with X-rays

• VHE Flares are generally well correlated with X-ray flares.

Broadband Spectrum

Mrk 501

Correlation in γ -ray and X-ray variability is most easily explained in IC scenarios.

 \rightarrow Same e⁻ population.

Additional constraints on electron energies, time scales, etc.

Starting to get a <u>detailed</u> understanding of these sources.

Has DM Already Been Detected?

CANGAROO-II (S. Australia)

Galactic Center observations with CANGAROO-II telescope

Alpha distributions

Probably not !

More on Dark Matter

- Whipple result on GC
- Excess γ-ray map from 2000-2003 data (16 hrs).

STAY TUNED !

Core of Draco Dwarf

- Other good candidates include nearby galaxies with high mass/light: Draco, Ursa Minor, M32, M33.
- These are being pursued.

FUTURE

Future HE Telescopes

VERITAS

VERITAS CONCEPT

Collaboration: 50 scientists U.S, Canada, U.K., Ireland

Detector Design:

- Seven 12m telescopes
- 500 pixel cameras (3.5°)
- Site in southern Az (1700m)
- Phase 1 operational in 2006.

Some characteristics:

- Energy threshold ~ 100 GeV
- Ang. Resolution ~ 4 arc-min
- Crab rate ~ 35 γ/min (45s detection!)

VERITAS – Well Underway

Telescope 1:

- All major systems tested.
- Operational in fall 2004.

Electronics trailer

Rene A. Ong

500 MHz

FADC

VERITAS –1st Cherenkov Images

•

VERITAS Event Movie (Dec 03)

Rene A. Ong

Brown Colloquium 1 Mar 2004

Page 41

Variability Performance

The Competition: HESS

H.E.S.S. Phase I 4 x 12m Telescopes

Namibia Site (1700 m)

Rene A. Ong

Brown Colloquium 1 Mar 2004

Page 43

GLAST – Satellite Telescope

GLAST LAT Instrument:

- Si tracker
- CsI calorimeter
- Anti-coincidence veto

Sky map from 1 year survey

Launch in 2007.

Summary

- Very HE particles provide unique tests of the limits of physical laws. Probe astrophysics in regimes not well understood.
- We have made a survey of the sky at GeV energies. At TeV energies, we have detected some remarkable phenomena, but most of the sky remains unexplored → New Instruments.
- Great potential for discovery of physics beyond our standard models. (But, this physics is <u>not</u> yet required).

"The real voyage of discovery consists, not in seeking new landscapes, but in having new eyes." Marcel Proust (1871-1922)