

Very High Energy Astrophysics and the Cherenkov Telescope Array

Rene A. Ong (UCLA)

UBC, 3 December 2015

Outline

Scientific & Technical Motivation

Science Overview – VHE gamma-ray sky Experimental Techniques Three selected science topics in brief Planning for the Future \rightarrow CTA

Cherenkov Telescope Array (CTA) Concept

Science Drivers \rightarrow requirements CTA Design & Performance \rightarrow **Scientific Capabilities**

CTA Implementation & Status

Implementation: design and prototype telescopes
Present status (2015): site selection, timeline, etc.
Key Science Projects (KSPs) – Core science – two brief examples

Summary

Very High Energy (VHE) Astrophysics

VHE γ-ray Sky c1997

VHE γ-ray Sky c2005

VHE γ-ray Sky c2015

Detailed source information: Spectra, Images, Variability, MWL ...

GeV γ-ray Sky c2015 (Fermi)

~160 sources , covering wide range of types

VHE + GeV γ-ray Sky c2015

Detailed source information: Spectra, Images, Variability, MWL ... + FERMI-LAT map

The HE Milky Way (2015)

Extended sources, size typically few 0.1° few 10 pc

H.E.S.S. (TeV)

Fermi-LAT (GeV)

Courtesy of W. Hofmann

Exploring the non-thermal Universe "ASTRO"

Probing New Physics at GeV/TeV scale "PARTICLE"

Experimental Technique

Fermi Large Area Telescope (LAT)

Anti-Coincidence Shield Si Strip Tracker

Calorimeter

Gamma ray

Positron

Electron

~ 1 m² 2.5 sr 30 MeV-300 GeV

Excellent survey instrument

Steeply falling spectrum:

x10 in Energy \rightarrow divide by 100-500 in flux

- Large effective area needed to get detectable signals at VHE
- Natural detector: the atmosphere

Pulse is ~few ns duration

Image in

camera

Effective area = Cherenkov light pool ~10⁵ m² !

Whipple 10m γ-ray Telescope (1968-2011)

- Pioneered use of Imaging
- Made first source detection. (Crab Nebula in ~90 hours)

cosmic ray

Imaging atmospheric Cherenkov arrays

Pulse is ~few ns duration

Image in

camera

Effective area = Cherenkov light pool ~10⁵ m² !

VHE Telescopes (2015)

Fermi

Selected Science Highlights

- Supernova remnants & origin of cosmic rays
- AGN and intergalactic radiation fields
- Un-Identified sources & Dark Matter

Supernova Remnants

SN 1006

(Credit:X-ray: NASA/CXC/Rutgers/G.Cassam-Chenai, J.Hughes et al.; Radio: NRAO/AUI/NSF/GBT/VLA/Dyer, Maddalena & Cornwell; Optical: Middlebury College/F.Winkler, NOAO/AURA/NSF/CTIO Schmidt & DSS)

TeV gamma rays

0.40

Supernova Remnants (SNRs)

"Standard Model" for high-energy cosmic rays

- Supernova, where outer layers are ejected with v ~ several x 10³ km/s.
- Expanding shell & <u>shock front</u> sweeps up material from ISM.
- Acceleration of particles via diffusive shock acceleration (originally Fermi mechanism).
- In ~ 10⁴ yrs, blast wave deccelerates and dissipates.
- Can supply and replenish CR's if $\epsilon \sim 5-10\%$.

Good model ... is it right ?

RXJ 1713-3946 Age = 1600y D = ~1 kpc

IC 443 Age ~ 30ky D ~ 0.8kpc IC 443 WISE – <mark>22, 12, 4.6</mark> μm

Active galactic nuclei and their jets

Cen-A

Nearest AGN, d ~ 4 Mpc Radio lobes 3-4°, ~300 kpC

Active galactic nuclei and their jets

Radio

Cen-A

Nearest AGN, d ~ 4 Mpc Radio lobes 3-4°, ~300 kpC

kpc - "Inner jet

Active galactic nuclei and their jets

TeV energies HESS, ApJL 695 (2009) L40

Radio

kpc — "Inner jet

Cen-A

Nearest AGN, d ~ 4 Mpc Radio lobes 3-4°, ~300 kpC

AGN: Extreme Variability

VHE γ -rays as Cosmological Probes

Extragalactic Background Light (EBL):

- OIR diffuse background produced by star-formation throughout history of universe.
- γγ interaction probes EBL density, uniformity, evolution
- Potential way to measure tiny extragalactic magnetic field (EGMF).

 $B \sim 10^{-10} - 10^{-18} G$

Is the Universe too Transparent?

Galactic Center

Infrared

Ghez et al., 2012 1″ x 1″

GeV & TeV emission is:

- intense & non-thermal
- totally unexpected
- not understood !

Dark Matter ??

GeV γ-rays

S. Murgia, "Dark Attack 2012" 10° x 10°

Galactic Longitude

Dark Matter Detection

Dark Matter Results

γ-ray DM limits

R.A. Ong, Nobel Symposium 154

No signal (yet)

- Limits approaching the thermal relic cross section.
- Gamma-ray instruments probe high mass region not easily accessible by other techniques

GeV excess in GC

- very significant.
- seen by multiple authors.
- consistent with DM profile and 30-40 GeV mass.
- Complicated region with multiple astrophysical components.

Summary of Key Science Questions

Bottom line: GeV and TeV gamma-ray sources are ubiquitous in the universe and probe extreme particle acceleration, and the subsequent particle interactions and propagation.

- 1. Where and how are the bulk of CR particles accelerated in our Galaxy and beyond? (one of the oldest surviving questions of astrophysics)
- 2. Can we understand the physics of jets, shocks & winds in the variety of sources we see, including pulsars, binaries, AGN, starbursts, and GRBs?
- 3. How do black holes of all sizes efficiently particles? How are the structures (e.g. jets) formed and how is the accretion energy harnessed?
- 4. What do high-energy gamma rays tell us about the star formation history of the Universe, intergalactic radiation fields, and the fundamental laws of physics?
- 5. What is the nature of dark matter and can we map its distribution through its particle interactions?
- 6. What new, and unexpected, phenomena will be revealed by exploring the non-thermal Universe?

Bonus science: optical interferometry, cosmic-ray physics, OSETI, etc.

From current arrays to CTA

Light pool radius R ≈ 100-150m ≈ typical telescope Spacing

Sweet spot for best triggering & reconstruction... most showers miss it!

✓ Large detection Area
 ✓ More Images per shower
 ✓ Lower trigger threshold

How to do better with IACT ARRAYS?

➡ More events, more photons

- Better spectra, images, fainter sources
 - Larger light collecting area
 - Better reconstructed events
- Better measurement of air shower and hence primary gammas
 - Improved angular resolution
 - Improved background rejection power
- More telescopes!

Simulation: Superimposed images from 8 cameras

Planning for the Future

What do we know, based on current instruments?

Great scientific potential exists in the VHE domain

> Many more sources & deeper probes for new physics

IACT Technique is very powerful

> Have not yet reached its full potential \rightarrow large Cherenkov array

Exciting science in both Hemispheres

Argues for an array in both S and N

Open Observatory \rightarrow **Substantial reward**

Open data/access, MWL connections to get the best science

International Partnerships required by scale/scope

CTA must develop the instrument and the observatory

CERTAR CONTRACTOR OF A CONTRAC

Requirements & Drivers

Energy coverage down to 20 GeV (Discovery domain: GRBs, Dark Matter) cta theorem to receive an ar

Energy coverage up to 300 TeV (Pevatrons, hadron acceleration)

Good energy resolution, ~10-15%: (Lines, cutoffs)

> Rapid Slew (20 s) to catch flares: (Transients)

10x Sensitivity & Collection Area (Nearly every topic) Large Field of view 8-10° (Surveys, extended sources, flares)

Angular resolution < 0.1° above most of E range (Source morphology)

CTA Design (S array)

Science Optimization under budget constraints

Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes (LST's)

Medium energies

100 GeV – 10 TeV 9.5 to 12 m diameter 25 single-mirror telescopes up to 24 dual-mirror telescopes (MST's/SCTs)

High energies

10 km² area at few TeV 3 to 4m diameter 70 telescopes (SST's)
Differential Flux Sensitivity

10⁻⁸

10⁻⁹

10⁻¹⁰

10⁻¹¹

10⁻¹²

10⁻¹³

10⁻¹⁴

Differential Flux E²dN/dE (erg cm⁻² s⁻¹)

10⁵

10⁶

10⁷

10⁸

Major sensitivity improvement & wider energy range \rightarrow Factor of ~x10 increase in source population

10⁴

Photon Energy (MeV)

10³

10²

Galactic Discovery Reach

Current Galactic VHE sources (with distance estimates) HESS/ VERITAS

СТА

Survey speed: x300 faster than current instr.

Angular Resolution

Transient Capability (< 100 GeV)

CTA Implementation & Status

CTA Consortium

CTA is being developed by the CTA Consortium:

31 countries, ~1270 scientists, ~180 institutes, ~420 FTE

CTA South Array

Large Telescope (LST)

23 m diameter
390 m² dish area
28 m focal length
1.5 m mirror facets

4.5° field of view0.1° pixelsCamera Ø over 2 m

Carbon-fiber structure for 20 s positioning

Active mirror control

4 LSTs on South site 4 LSTs on North site

Prototype construction Underway (La Palma)

Medium Telescope (MST)

. ...

100m² mirror dish area
16 m focal length
1.2 m mirror facets

8° field of view ~2000 x 0.18° pixels

25 MSTs on South site 15 MSTs on North site

Prototype at DESY (Berlin)

Small Sized Telescopes (SSTs)

- 3 different prototype designs
- 2 designs use two-mirror approaches (Schwarzschild-Couder design)
- All use Si-PMT photosensors
- 7-9 m² mirror area, FOV of 9°

SST-1M Krakow, Poland SST-2M ASTRI Mt. Etna, Italy SST-2M GCT Meudon, France

Two-Mirror Telescopes

Schwarzschild-Couder (SC) Design

Vassiliev, Fegan, Brousseau Astropart.Phys.28:10-27,2007

- Reduced plate scale
- Improved PSF
- Uniform PSF across f.o.v.

→ Low-cost small telescopes with compact sensors (SST-2M)

→ Higher-performance, cost-effective, medium telescope (MST-SCT)

3 telescope prototypes within CTA are using two mirror designs -All make use of Si-PMT cameras.

Medium Telescope 2-mirror (SCT)

9.7 m primary
5.4 m secondary
5.6 m focal length, f/0.58
50 m² mirror dish area
PSF better than 4.5' across 8° FOV

8° field of view 11328 x 0.07° SiPMT pixels TARGET readout ASIC

SCTs can augment / replace MSTs in either S or N → proposed US contribution

→ Increased γ-ray collection area
 → Improved γ-ray ang. resolution
 → Improved DM sensitivity

SCT \rightarrow Superior Imaging

Made possible by Si-PMT's !

Signal: γ-ray Shower Energy: 1 TeV

"Baseline" Single-Mirror Telescope Images 8° field of view 0.18° pixels 1,570 channels

Ba

Background: Proton Shower Energy: 3.2 TeV

SCT Two-Mirror Telescope Images 8° field of view 0.067° pixels 11,328 channels

SCT Prototype Development

Prototype panels for primary mirror (M1)

Prototype under construction in Arizona

Camera design, backplane and elements

Individual (64-chan) Camera module

Backplane

TARGET-7 ASIC

Site Selection

Two sites to cover full sky at 20°-35° N, S

Steps Towards Approval

CDR carried out in June 2015 by Science and Technical Advisory Committee (STAC) – Chair. R. Blandford

2016-2017: Site negotiations, founding agreement, pre-production reviews, initial site construction

Scheduling KSPs and GO program

Hypothetical time sharing – this is a notional picture !

Key Science Projects (KSPs)

Galactic Plane Survey (GPS)

da

Galactic Plane Survey (GPS)

cta cherenkov telesco

Dark Matter Reach

M. Wood et al. arXiv:1305.0302

Sensitivity below thermal relic in TeV mass range - critical reach, not achieved by direct detectors or LHC

We've learned a lot from previous/present experiments

With many discoveries, VHE γ -rays are now a well-recognized astrophysical discipline

Outstanding science potential & the power of the atmospheric Cherenkov technique \rightarrow CTA

Cherenkov Telescope Array (CTA)

Outstanding sensitivity & resolution over wide energy range Far-reaching key science program Open observatory with all data released to public US contribution focused on novel, high-resolution SC telescope CTA requires a broad partnership of countries and communities

 In next decade, CTA will start to provide high-quality data, not seen with any HE/VHE technique, but there is still a great deal to do !

BACKUP

Some of the many topics not covered

- "Fermi Bubbles"
- Gamma-ray "lines" near Galactic center
- Primordial black holes
- Fermi "haze"
- Positron excess Geminga ?
- Lorentz invariance violation (LIV)
- Extragalactic magnetic field (EGMF)
- Pion bump in several SNRs origin of CR's
- VHE binary systems "Swiss clocks"?
- Crab pulsar unexpected flares and TeV emission
- Cosmic-ray anisotropy evidence for local accelerator(s)?

Multi-faceted Astroparticle Physics

Balloon Instruments ANITA

Atmospheric Cherenkov Telescopes

HESS, VERITAS MAGIC ...

Ground or Underground Detectors

CDMS, Xenon ... ADMX, CAST ...

Satellite Instruments Fermi, AMS PAMELA ...

Air Shower Arrays Auger, TA ...

IceCube ...

Ice/Water Cherenkov Detectors

Fermi Bubbles

M. Su et al. 2010

Complete Surprise !

- Very extended (10 kpc) with hard spectrum.
- Related to earlier history of Galactic center ?

CTA Key Science Projects (KSPs)

Science Questions

Theme		Question		Dark Matter Programme	Galactic Centre Survey	Galactic Plane Survey	LMC Survey	Extra- galactic Survey	Transients	Cosmic Ray PeVatrons	Star-forming Systems	Active Galactic Nuclei	Galaxy Clusters
1	Understanding the Origin and Role of Relativistic Cosmic Particles	1.1	What are the sites of high-energy particle acceleration in the universe?		v	~~	~~	J J	~~	v	v	•	11
		1.2	What are the mechanisms for cosmic particle acceleration?		V	~	v		~~	~~	v	~~	~
		1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		V		v				~~	V	v
-		2.1	What physical processes are at work close to neutron stars and black holes?		V	~	~			~~		~~	
2	Probing Extreme Environments	2.2	What are the characteristics of relativistic jets, winds and explosions?		~	v	•	v	~~	~~		~~	
		2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					v	~			~~	
3	Exploring Frontiers in Physics	3.1	What is the nature of Dark Matter? How is it distributed?	~~	~~		•						~
		3.2	Are there quantum gravitational effects on photon propagation?						~	4		~~	
		3.3	Do Axion-like particles exist?					v	V			~~	

Nine KSPs + DM Programmed are proposed

Here, show just a few of the KSPs ...

The importance of pointing precision

SNR Questions

Supernova remnants accelerate particles to ~PeV energies!

but ...

- Which particles are accelerated?
- Electrons
 \rightarrow TeV γ -raysProtons
 \rightarrow TeV γ -raysUp-scattering of
soft photonsTarget interaction,
 π^0 decay $\prod_{n=1}^{\infty} \prod_{j=1}^{\infty} \prod_{j=1}^{\infty}$
- Can we quantitatively account for the CR spectrum and yield?
- How and when are the particles released from the accelerator ?
- How do they propagate away from accelerator?

There is now good evidence for SNR acceleration of CRs, but there is still a lot to understand.

Active galactic nuclei and their jets

GeV energies Fermi, ApJ 719 (2010) 1433 Fermi, Science 328 (2010) 725

> TeV energies HESS, ApJL 695 (2009) L40

Radio

10

WIMP DM Complementary Approaches

WIMP annihilation In the cosmos

Indirect Detection

WIMP-Nucleon Elastic scattering

Direct Detection

Wind Hand

Heavy particle prod. MET + jets Weak pair prod. MET + monojet

LHC Production

WIMPs: a More General Framework

D. Bauer et al., "Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond," White Paper for Snowmass 2013.

1.0 = expected thermal relic cross-section

- For gluon/quark interactions, LHC competitive or dominates at energies below ~few 100 GeV.
- For gluon and lepton interactions, direct expts. are important.
- For quark and lepton interactions, indirect expts are important.

Galactic Plane Survey (GPS)

Entire plane surveyed to < 3.8 mCrab - several 100's of sources

Galactic Center

Galactic latitude

Galactic longitude

Survey ~1/4 of sky (adjoining GPS)

- Unbiased sample of blazars, log N log S, extreme blazars, etc.
- Wider coverage of serendipitous events e.g. GRBs
- Unexpected phenomena e.g. ULIRGs, Seyferts, dark clumps,

Blazar luminosity function

Important MWL Synergies

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
		CTAC	onstruction	CTA E	Early Science		CTAFu	I Operation			
Low Free	luency Rad	lio									
LOFAI	2	_									
MWA		111.4	MWA (upg	1ade) (.aalaa Loo)				:	
	VLITE on J	VLA	>	(~20187 LU	(080)	C ST A	12.5 1 - 0.54	<u> </u>			
MIG-HIFI	equency H	adio	:		:			, ,			
ASKA	P >> Marca M AT					\neg					
	>WIGHTAT)	:	:	;		· ·
e Mer li	n										ĵ
ATCA											
		_									
(sub)Milli	imeter Rad	io				<u> </u>					
ALMA											
	EHT Q	rototype>	tuli ops)								;
Optical T	ransient F	actories/T	ransient Fi	inders		<u> </u>					
PTF	> (~2016) Zwi	icky TF)		TOTT #			
Pansi.	AKKSI> Pa	BhckGEM	Meerlicht	s full array	in Oct 2016)				m survey mo	ae)	
Queitaria	: (ailiai a a	(Meethene	;	:	;	_				
Optical/I	K Large Fa	cinties	:	:	:	:	:	:	:	:	
	Кеск	:	:	:	IWST					1	
					:	eELT &	TMT				j
X-ray							GMT				5
SWIF"	T (incl UV/op	tical)									
	& Chandra										
NUSTA	R	STDOGAT						_			ATHENA(2028)
	AstroH	STROSAT			_	_)	i		
Gamma-i	rav	NICER/	HXMT)	1	1			
INTEG	RAL				1	-:	SVOM (incl. optical g	round eleme	nts)	
FERMI							-ĵ				
	HAWC										
Grav. Wa	Ves	ЛРЕ	<u>.</u>								(2025+)
_	Advance	ed LIGO + A	Advanced VII	RGO (2016)		(- upgrade i	to include LIC	GO India-)			Einstein Tel?
Neutrino	si (eL	ISA					_				
		IceCin	be SINCE 20	11)		:					IceCube Cen22
ANTADE	15	TURC-U	KM3NE1	G1		KM3NE	T-2 (ARCA)				KM3NET.3
COLUMN TO A						A STATISTICS	watering)				parter and a p

Caveat: Observatory timelines are very uncertain; this represents a notional picture based on available information

Science Themes

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Processes in relativistic jets, winds and explosions?
- Exploring cosmic voids

Theme 3: Physics Frontiers – beyond the SM

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high energy photons?
- Do axion-like particles exist?

Full Sky Coverage

CTA Collection Area

Crucial for: High-energy spectra, discovery of Pevatrons \rightarrow Origin of CRs

Science Verification, Early Science

This is a notional view !

Flux Sensitivity (Crab units)

Telescope Specifications

SiPM Cameras

3 SST types

	LST "large"	MST "medium"	SCT "medium 2-M"	SST "small"
Number	4 (S) 4 (N)	25 (S) 15 (N)	≤ 24 (S and N)	70 (S)
Energy range	20 GeV to 1 TeV	200 GeV to 10 TeV	200 GeV to 10 TeV	> few TeV
Effective mirror area	> 330 m ²	> 90 m²	> 50 m²	> 5 m²
Field of view	> 4.4°	> 7º	> 7º	> 8º
Pixel size ~PSF θ ₈₀	< 0.12°	< 0.18°	< 0.07°	< 0.25°
Positioning time	50 s, 20 s goal	90 s, 60 s goal	90 s, 60 s goal	90 s, 60 s goal
Target capital cost	7.4 M€	1.6 M€	< 2.0 M€	500 k€

LA PALMA

- Canary Islands, Spain
- Observatorio del Roque de los Muchachos
- Existing observatory, under management by Instituto de Astrofisica de Canarias (IAC)
- Site of LST prototype & existing MAGIC telescopes

ESO/PARANAL

cherenkov telescope array

- Atacama Desert, Chile
- Below Cerro Paranal
- Existing observatory, under management by European Southern Observatory (ESO)
 Near a set of existing (VLT) and future (ELT) telescopes

Vulcano Llullaillaco 6739 m, 190 km east

Proposed Site for the Cherenkov Telescope Array

Cerro Paranal Very Large Telescope

© Marc-André Besel

LST Full Prototype

Elevation drive prototype

Prototype Camera design

Mirror prototype (cold-slump, Sanko)

Area = 1.96 m^2 Mass = 47 kg

MST Cameras and Mirror Control

Prototype automatic mirror control (AMC)

Flash-ADC + digital trigger + rack electronics ("FlashCAM")

Capacitor pipeline + analog trigger + fully-contained "drawers" ("NectarCAM")

Nectar-board prototype

SST-2M-GCT Camera + Module

Photosensor module

cherenkov telescope array

Silicon-PMT Camera

SST-2M - ASTRI Focal Plane

(4 channels)

Small Telescope 2-mirror (SST-2M)

SST-2M –ASTRI PROTOTYPE INAUGURATION, 24 SEPT 2014 (SERRA LA NAVE, SICILY) SST-2M-GCT (GATE-CHEC TELESCOPE)

BOTH 2-MIRROR SST DESIGNS USE COMPACT, SILICON-PM CAMERAS

SCT Prototype @ Whipple Obs.

Prototype location at Whipple basecamp (near VERITAS, Arizona USA)

Fall : Assembly of telescope Delivery of camera Start of comissioning

Positioner from DESY (Same as MST)

Observing Schedule (S, Yrs 1-2)

Observation completeness according to all the targets:

Observation completeness according to the planned

HAWC & CTA

Wide FOV Medium sensitivity Moderate resolution 100% duty cycle N hemisphere Moderate FOV High sensitivity High resolution 15% duty cycle N & S hemispheres

Complementary Capabilities !

We can envision many ways to collaborate effectively

CTA Galactic Plane Survey

Simulation for | | < 60°

Possible Layouts for N,S Arrays

South site

4 large 23m telescopes: LST 25 medium12m telescopes: MST meters 1500 ≤ 24 medium 10m telescopes: SCT (US) 70 small 4m telescopes: SST 1000 500 0157 0 O MST SST OSCT -500 . 1000 3 km 1500 1500 1000 500 0 500 1000 1500 meters

North site 4 large LST 15 medium MST

Key Science Projects (KSPs)

The KSPs are:

- to ensure that some of the key science questions for CTA are addressed in a coherent fashion, with well-defined strategy,
- typically hard to carry out within a Guest Observer program,
- planned, proposed, carried out by CTA Consortium under guaranteed time, and
- conceived to provide legacy data sets for use by the entire community.

TDRs Delivered on May 25

Open Access, Public Data

First Time in this field

