

The Cherenkov Telescope Array for VHE Astrophysics

Rene A. Ong (UCLA), for the CTA Consortium

HAWC Science Symposium, 26 March 2015

Outline

Scientific & Technical Motivation

VHE sky and Existing Instruments Imaging Atmospheric Cherenkov technique Planning for the Future \rightarrow CTA

Cherenkov Telescope Array (CTA) Concept

Requirements & Drivers CTA Design & Performance → Scientific Capabilities

CTA Implementation & Status

Implementation: Telescope and Array Design Present Status (2015): site selection, Critical Design Review (CDR), etc.

Synergies with HAWC (and other facilities)

Scientific & Technical Motivation

Exploring the non-thermal Universe

VHE γ-ray Sky c2014

Detailed source information: Spectra, Images, Variability, MWL ...

VHE γ-ray Sky c2014

Detailed source information: Spectra, Images, Variability, MWL ... + FERMI-LAT map

Wide-Field View of VHE Sky

Complementary results from wide-field VHE telescopes:

e.g. Milagro, Tibet, ARGO-YBJ, IceCube

Portion of Milagro sky-survey near Galactic plane

Milagro/IceCube

Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)

Cosmic ray anistropy – confirmed by 3 experiments

VHE Telescopes (2013)

Fermi

VHE Telescopes (2015)

Fermi

Uv-optical renecting minors focussing flashes of Cherenkov light produced by air-showers onto nssensitive cameras.

~10 km

➡ 5 km

adiation

Shower

140 m

From current arrays to CTA

Light pool radius R ≈ 100-15-m ≈ typical telescope Spacing

Sweet spot for best triggering & reconstruction... most showers miss it!

Large detection Area
 More Images per shower
 Lower trigger threshold

HOW TO DO BETTER WITH IACT ARRAYS?

More events

- More photons = better spectra, images, fainter sources
 - Larger light collecting area
 - Better reconstructed events
- More precise measurements of atmospheric cascades and hence primary gammas
 - Improved angular resolution
 - Improved background rejection power
- More telescopes!

Simulation: Superimposed images from 8 cameras

What do we know, based on current results?

Great scientific potential exists in the VHE domain

- Many more sources, much better understanding possible
- Much deeper probes of new physics

IACT Technique is very powerful

Have not yet reached its full potential

Exciting science in both Hemispheres

Argues for new facilities in S and N

Truly Astronomical facility → Substantial reward

- Open Observatory needed to get the best science
- MWL/MM connections are of critical importance

CERTAR CONTRACTOR OF A CONTRAC

CTA Consortium

CTA is being developed by the CTA Consortium:

29 countries, ~1200 participants, ~180 institutes, ~400 FTE

Science Themes

Theme 1. Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
 - What is their impact pr

Theme 2: Probing Extreme Environments

Process
Process
Exploring of

close to neutron stars and black holes? in relativistic jets, winds and explosions?

onment?

Theme 3: Physics Frontiers – beyond the SM

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high energy photons?
- Do axion-like particles exist?

Requirements & Drivers

Energy coverage down to 20 GeV (*Discovery domain: GRBs, Dark Matter*) cta theorem to recovery

Energy coverage up to 300 TeV (Pevatrons, hadron acceleration)

Good energy resolution, ~10-15%: (Lines, cutoffs)

> Rapid Slew (20 s) to catch flares: (Transients)

10x Sensitivity & Collection Area (Nearly every topic) Large Field of view 8-10° (Surveys, extended sources, flares)

Angular resolution < 0.1° above most of E range (Source morphology)

CTA Design (S array)

Science Optimization under budget constraints

Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes (LST's)

Medium energies

100 GeV – 10 TeV 9.5 to 12 m diameter up to 25 single-mirror telescopes up to 24 dual-mirror telescopes (MST's)

High energies

10 km² area at few TeV 4 to 6 m diameter up to 70 telescopes (SST's)

Full Sky Coverage

Differential Flux Sensitivity

Major improvement over a wide energy range

Flux Sensitivity (Crab units)

Differential sensitivity (C.U.)

Galactic Discovery Reach

Current Galactic VHE sources (with distance estimates)

HESS

СТА

Survey speed: x300 faster than HESS

Dark Matter Reach

- critical complementarity to direct detectors and LHC

CTA Collection Area

Crucial for: High-energy spectra, discovery of Pevatrons \rightarrow Origin of CRs

Angular Resolution

Transient Capability (< 100 GeV)

CTA Implementation & Status

Southern & Northern Sites

South site

Telescope Specifications

	LST "large"	MST "medium"	SCT "medium 2-M"	SST "small"
Number	4 (S) 4 (N)	25 (S) 15 (N)	24 (S)	70 (S)
Energy range	20 GeV to 1 TeV	200 GeV to 10 TeV	200 GeV to 10 TeV	> few TeV
Effective mirror area	> 330 m²	> 90 m²	> 40 m²	> 5 m²
Field of view	> 4.4°	> 7º	> 7º	> 8º
Pixel size ~PSF θ ₈₀	< 0.11°	< 0.18°	< 0.075°	< 0.25°
Positioning time	50 s, 20 s goal	90 s, 60 s goal	90 s, 60 s goal	90 s, 60 s goal
Target capital cost	7.4 M€	1.6 M€	2.0 M€	420 k€

23 m diameter
389 m² dish area
28 m focal length
1.5 m mirror facets

4.5° field of view0.1° pixelsCamera Ø over 2 m

Carbon-fiber structure for 20 s positioning

Active mirror control

4 LSTs on South site 4 LSTs on North site Prototype = 1st telescope

LST Full Prototype

Elevation drive prototype

Prototype Camera design

Mirror prototype (cold-slump, Sanko)

Area = 1.96 m^2 Mass = 47 kg

Medium Telescope (MST)

. 40

100 m² dish area
16 m focal length
1.2 m mirror facets

8° field of view ~2000 x 0.18° pixels

25 MSTs on South site 15 MSTs on North site

Prototype at DESY (Berlin)

MST Cameras and Mirror Control

Prototype automatic mirror control (AMC)

Flash-ADC + digital trigger + rack electronics ("FlashCAM")

Capacitor pipeline + analog trigger + fully-contained "drawers" ("NectarCAM")

Nectar-board prototype

Small Telescope 1-mirror (SST-1M)

SST-1M PROTOTYPE INAUGURATION, 2 JUNE 2014 (KRAKOW)

Silicon-PMT Camera

Two-Mirror Telescopes

Schwarzschild-Couder (SC) Design

Vassiliev, Fegan, Brousseau Astropart.Phys.28:10-27,2007

- Reduced plate scale
- Reduced PSF
- Uniform PSF across f.o.v.

→ Cost-effective small telescopes with compact sensors (SST-2M)

→ Higher-performance medium telescopes with small pixels (MST-SCT)

Small Telescope 2-mirror (SST-2M)

SST-2M –ASTRI PROTOTYPE INAUGURATION, 24 SEPT 2014 (SERRA LA NAVE, SICILY) SST-2M-GCT (GATE-CHEC TELESCOPE)

BOTH 2-MIRROR SST DESIGNS USE COMPACT, SILICON-PM CAMERAS

SST-2M - ASTRI Focal Plane

(4 channels)

SST-2M-GCT Camera + Module

Photosensor module

cherenkov telescope array

Medium Telescope 2-mirror (SCT)

9.7 m primary
5.4 m secondary
5.6 m focal length, f/0.58
40 m² eff. coll. area
PSF better than 4.5' across 8° fov

8° field of view 11328 x 0.07° SiPMT pixels Target readout ASIC

Extend South array by adding 24 SCTs

→ Increased γ -ray collection area → Improved γ -ray angular resolution

SCT Prototype Development

Prototype panels for primary mirror (M1)

Camera design, backplane and elements

Individual (64-chan) Camera module

Target-7 ASIC

SCT Prototype @ Whipple Obs.

Prototype location at Whipple basecamp (near VERITAS, Arizona USA)

Soon: Positioner installed Summer: Camera delivered Fall: Start of commissioning

Positioner from DESY (Same as MST)

Site Selection

Two sites to cover full sky at 20°-35° N, S

North: Decision for which site to negotiate aimed for Spring 2015 (Arizona, Canary Islands, San Pedro Martir)

-30

+30

South: negotiations started with ESO/Chile and Namibia; Conclusion likely not before summer 2015 Argentinian site kept as 3rd option

Steps Towards Approval

EC-supported Preparatory Phase, followed by CTA GbmH, for legal support

CDR scheduled for June 2015 by Science and Technical Advisory Committee (STAC) – Chair. R. Blandford

After approval, assume 5-year construction phase

Open Access, Public Data

First Time in this field

Key Science Projects (KSPs)

The KSPs are:

- aimed to ensure that some of the key science issues for CTA are addressed in a coherent fashion, with welldefined strategy
- typically hard to carry out within a Guest Observer program.
- planned, proposed, carried out by CTA Consortium under guaranteed time
- conceived to provide legacy data sets for use by the entire community

The KSPs will evolve over time!

KSP Scheduling

Galactic Plane Survey (GPS)

Entire plane surveyed to < 3.8 mCrab

Galactic Center

Extragalactic Survey

Important Synergies

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
		CTAC	Construction	CTAI	Early Science	CTAF	ull Operation	n			
Low Free	uency Rad	lio									
LOFAR											
MWA)		IWA (upg	rade)						
Mid-Hi Fi	requency R	adio				SKA	.1&2 (Lo/Mi	d)			
ASKA	P					\supset					
Kat7> Meer KAT											
e Mer li	<u>n</u>										
ATCA				$ \rightarrow $							
(sub)Mill	imeter Rad	io									
ALMA		-	i	<u>i</u>	i	i	i		i	i	
	(EHT (p	rototype>	full ops)								
Optical 1	ransient F	actories/1	Fransient Fir	ders							
PTF	>(~2016) Zwi	cky TF			:	÷					
PanSTARRS1> PanSTARRS2 LSST (full survey mode)											
		BlackGEM	(Meerlicht>	fullarray	in Oct 2016)						
Optical/I	R Large Fa	cilities									
VLT &	Keck		1	TUST)	
X-ray				<u>J#51</u>	:	eELT &	TMT				
SUIF	:	:	;	:	:		GMT				
XMM	& Chandra		_	_		<u>)</u> ,					
NuSTA	R										
	ASTRO	SAT				_]			
Commo	ASUON	NICER/	HXMT			SVOM					
Gamma-	ay DAT	1									LOFT (prop.)
FERMI	KAL):	:	i	i					ATHENA (2028
	HAWC						,				<u></u>
	DAM	IPE									(2025+)

Caveat: Observatory timelines are very uncertain; this represents a notional picture based on available information

HAWC & CTA

Wide FOV

100% duty cycle

N hemisphere

Moderate resolution

Moderate FOV

15% duty cycle

N & S Hemispheres

Excellent resolution

Complementary Capabilities !

We can envision many ways to collaborate effectively

Summary

We've learned a lot from previous/present experiments

Fruitful science & power of the atmospheric Cherenkov technique \rightarrow new, much more powerful Observatory using IACTs

Cherenkov Telescope Array (CTA)

Science drivers → Design → Performance → Science Capabilities
Design of the Arrays, Status of Prototype construction
CTA Consortium and the Key Science Projects
Open Observatory
2015: Update on site and critical design review

■ HAWC: an important VHE instrument → great science

In few years, CTA will provide powerful data to complement HAWC We look forward to close cooperation between HAWC & CTA

Congratulations HAWC!

On behalf of the CTA Consortium, congratulations to the HAWC collaboration on reaching this important milestone !

BACKUP

CTA South Array

CTA Galactic Plane Survey

Simulation for | | < 60°

CTA Key Science Projects (KSPs)

Ten KSPs to be proposed

Theme	Question		Dark Matter Programme	Galactic Centre	Galaxy Clusters	LMC Survey	Active Galaxies	Star-forming Systems	Galactic Plane Survey	Extreme Accelerators	Translents	Extragalactic Survey	Cygnus Region
Understanding the Origin and Role of Relativistic Cosmic Particles	1.1	What are the sites of high-energy particle acceleration in the universe?		~	~~	~	~	~	~~	~	~	~	r
	1.2	What are the mechanisms for cosmic particle acceleration?		~		•	~~	~	~	~~	~~		r
	1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		~	~	•	~	~					~
Probing Extreme Environments	2.1	What physical processes are at work close to neutron stars and black holes?		•		•	~		~	~~			~
	2.2	What are the characteristics of relativistic jets, winds and explosions?		•		~	~~			~	~~		~
	2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					~~				~	~	
Exploring Frontiers In Physics	3.1	What is the nature of Dark Matter? How is it distributed?	~~	~~	*	*							
	3.2	Are there quantum gravitational effects on photon propegation?					~~			~	~		
	3.3	Do Axion-like particles exist?					~				~	~	

KSPs

Science Questions

Science Verification, Early Science

This is a notional view !

Observing Schedule (S, Yrs 1-2)

Number of planned targets: 110 Details

Observation completeness according to all the targets:

Observation completeness according to the planned

Essentially all needed observations completed in the two years.

Broad motivations for VHE γ -ray Astronomy:

PHYSICS Motivations

- Origin of Cosmic Rays
 energy balance of Galaxy
- Physics of compact objects
- Physics Frontiers (e.g. DM)

ASTRONOMICAL Motivations

- New observational window into non-thermal Universe
- High energy particle (e,p) accel.
 - shocks, winds, jets, etc.

Multiwavelength/Multi-Messenger Observations

HE γ -rays

Radio

X-rays

VHE neutrinos Grav. waves

VHE Multi-Messenger Astrophysics

The High Energy Milky Way

Extended sources, size typically few 0.1° few 10 pc

H.E.S.S. (TeV)

Fermi-LAT (GeV)

Courtesy of W. Hofmann

The Many Faces of TeV Particle Acceleration

WIMP DM Complementary Approaches

WIMP annihilation In the cosmos

Indirect Detection

WIMP-Nucleon Elastic scattering

Direct Detection

High and Hugher Higher hum and Anne hugher Higher hum and Anne hugher Higher hum and Higher hum

Heavy particle prod. MET + jets Weak pair prod. MET + monojet

LHC Production

WIMP Indirect Detection

WIMP Indirect Detection: γ-rays

