

GAPS – Dark matter search using low-energy antimatter

Rene A. Ong, for the GAPS Collaboration University of California, Los Angeles, CA 90095, USA

Cosmic Ray Anomalies

There are a variety of puzzles in cosmic rays:

Cosmic Ray Anomalies

There are a variety of puzzles in cosmic rays:

ICRC 2017 (Busan)

Cosmic Ray Anomalies

There are a variety of puzzles in cosmic rays:

AMS Anti-He Candidate Events

S.C.C. Ting, CERN Colloquium, https://indico.cern.ch/event/592392/

+ γ-rays from Galactic Center ...

Are these signs for DM annihilation ??

ICRC 2017 (Busan)

Antideuteron Searches

Anti-D's can be produced by BSM dark matter, and unlike e^{-} , e^{+} , \overline{p} , they are essentially background free:

Low-Energy Antiprotons

GAPS will make precision flux measurement of low-energy antiprotons – strong constraints on DM, PBH models:

- Complementary to direct/indirect searches and collider expts.
 - x10 more statistics @ 0.25 GeV than BESS/PAMELA/AMS
 - Search for light DM, gravitino DM, LZP in extra dimension theories, and PBHs

GAPS also has capability for detection of anti-He, using the exotic atom technique

→ studies ongoing to estimate the sensitivity

The GAPS Experiment

The GAPS Experiment

- General AntiParticle Spectrometer (GAPS): specifically designed for low-energy antideuterons and antiprotons
- Long-duration balloon (LDB) flight in Antarctic low geomagnetic cutoff
- Now approved by NASA for funding and launch in late 2020
- Strong international participation with Japan (JAXA) and Italy (INFN)

GAPS Instrument Design

GAPS Instrument Design

Time of Flight (TOF)

- Plastic scintillator 1.8m x 0.18m x 0.5cm
- Read out on both ends using PMTs/Si-PMs
- 500ps timing resolution

GAPS Instrument Design

Time of Flight (TOF)

THE REAL

- Plastic scintillator 1.8m x 0.18m x 0.5cm
- Read out on both ends using PMTs/Si-PMs
- 500ps timing resolution

Si(Li) Target/Tracker

- 4" Si(Li) disks, 2.5mm thick
- Dual energy range (X-rays, min-I)
- 3 keV energy resolution

GAPS

Rare event search required good particle ID and excellent background rejection:

• Combination of: TOF velocity (β), dE/dx, and depth, combined with unique X-ray emission and π /p from nuclear annihilation \rightarrow strong rejection power

The GAPS Team

GAPS Team @UCLA March 2017

T. Aramaki¹, R. Bird², M. Boezio³, S.E. Boggs⁴, R. Carr⁵, W.W. Craig⁵, P. von Doetinchem⁷, L. Fabris⁸, F. Gahbauer⁹, C. Gerrity⁷, H. Fuke¹⁰, C.J. Hailey⁹, C. Kato¹¹, A. Kawachi¹², M. Kozai¹², S.I. Mognet¹³, K. Munakata¹¹, S. Okazaki¹⁰, R.A. Ong², G. Osteria¹⁴, K. Perez⁵, V. Re¹⁵, F. Rogers⁵, N. Saffold⁹, Y. Shimizu¹⁶, A. Yoshida¹⁷, T. Yoshida¹⁰, G. Zampa³, and J. Zweerink²

¹SLAC National Accelerator Laboratory ²University of California, Los Angeles ³INFN, Sezione di Trieste ⁴University of California, San Diego ⁵Massachusetts Institute of Technology ⁶Lawrence Livermore National Laboratory ⁷University of Hawaii at Manoa ⁸Oak Ridge National Laboratory ⁹Columbia University

¹⁰Japan Aerospace Exploration Agency ¹¹Shinshu University ¹²Tokai University ¹³Pennsylvania State University ¹⁴INFN, Sezione di Napoli ¹⁵Università di Bergamo ¹⁶Kanagawa University RESEARCH CORPORATIO ¹⁷Aoyama Gakuin University for SCIENCE ADVANCEMENT

UCLA

ICRC 2017 (Busan)

The GAPS Experiment

pGAPS – Successful prototype flight

S.A.I. Mognet et al., NIM A735, 24 (2014) P. von Doetinchem et al., Astropart. Phys. 54, 93 (2014) June 2012 launch, Taiki, Japan

- Demonstrated stable operation of Si(Li) and TOF detectors during flight
- Studied Si(Li) cooling approach
- Measured background levels

ICRC 2017 (Busan)

Event in pGAPS

Current Work: Si(Li) Detectors

- GAPS will use 1350 4-inch, 4-strip Si(Li) detectors, 2.5mm thick
- Fabrication scheme developed at Columbia University; plan to have detectors produced by commercial company – Shimadzu in Japan.
- Confirmed leakage current and performance with cosmic rays and X-ray source

Currently optimizing fabrication; ramp up to trial production runs in early 2018

Current Work: TOF Detector

- The TOF will consist of 225 scintillation counters, read out on both ends
- PMTs (used in pGAPS) and Si-PMs being considered
- Custom board for readout using DRS-4 ASIC @ 2 GS/s
- TOF will measure particle β , dE/dx, provide rough tracking and master trigger

Prototype 1.2m paddles

R7600-UBA PMT and base

Si-PM testing

Stopping depth simulations (100 MeV antideuterons)

Major tasks: PMT/Si-PM decision, determining trigger algorithm

- Discovery of antideuterons in cosmic rays would a <u>very significant</u> result.
- GAPS is specifically designed for low-energy anti-D's and antiprotons
- Technique is different and complementary to AMS; if AMS sees some events, GAPS can confirm and go deeper.
- Prototype GAPS flight completely successful, verified detector operation
- Rapid timeline from funding start to GAPS construction, integration and first science flight in late 2020

Note: Two advertised postdoctoral positions, see: https://inspirehep.net/record/1505690 https://inspirehep.net/record/1495582

Si(Li) Electronics

