

Cherenkov Telescope Array: The Next Generation Gamma-ray Observatory

ICRC 2017 (Busan, Korea), 13 July 2017

The CTA Consortium¹, represented by Rene A. Ong²

¹See http://www.cta-observatory.org/consortium_authors/authors_2017_07.html ²University of California, Los Angeles, CA, 90095, USA

2005-2017: VHE Astronomy Comes of Age

- Dominant expectation (pre-1990)
 - Will find the "cosmic ray" accelerators probably SNRs
- Reality (2017)
 - Astonishing variety of VHE ⁺ emitters
 - Within the Milky Way
 - Supernova remnants
 - Bombarded molecular clouds
 - Stellar binaries colliding wind & X-ray
 - Massive stellar clusters
 - Pulsars and pulsar wind nebulae
 - Supermassive black hole Sgr A*
 - Diffuse & extended emission
 - Extragalactic
 - Starburst galaxies
 - MW satellites
 - Radio galaxies
 - Flat-spectrum radio quasars
 - 'BL Lac' objects
 - Gamma-ray Bursts

Cosmic Particle Accelerators

†0.05-50 TeV

Imaging Atm. Cherenkov Technique

Atm. Cherenkov showers:

- V. large light pool ~250 m diameter
- Rapid time structure ~ 5 ns
- Very calorimetric
- Fine angular structure (< 1')</p>

Imaging technique:

- Excellent shower reconstruction
- Large background rejection

Well-demonstrated by current instruments: H.E.S.S., MAGIC, & VERITAS

But we have not reached limit of the technique !

Further improved by:

- More views of shower
- Higher resolution images
- Wider field-of-view

Larger area \rightarrow More contained events, more images

Light pool radius R ≈ 100-150m ≈ typical telescope Spacing Sweet spot for best triggering & reconstruction... most showers miss it!

✓ Larger detection Area
 ✓ More Images per shower
 ✓ Better γ-ray reconstruction
 ✓ Lower energy threshold

Planning for the Future

cherenkov telescope array

What do we know, based on current instruments?

Great scientific potential exists in the VHE domain

Frontier astrophysics & important connections to particle physics

Imaging Cherenkov technique is very powerful

> Have not yet reached its full potential \rightarrow large telescope array

Exciting science in both Hemispheres

Argues for an array in both S and N

Open Observatory gives substantial reward

Open data/access, MWL connections to get the best science

International partnerships required by scale/scope

Challenges associated with putting pieces together (i.e. funding streams, communities, etc.)

CTA Consortium

cherenkov telescope array

The Consortium originated CTA and will contribute to the construction of the arrays

32 countries, ~1402 scientists, ~208 institutes, ~480 FTE

CTA Main Scientific Themes

Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Probing Extreme Environments

- Processes close to neutron stars and black holes
- Processes in relativistic jets, winds and explosions
- Exploring cosmic voids

Physics frontiers – beyond the Standard Model

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high-energy photons?
- Do axion-like particles exist?

 \rightarrow See upcoming "Science with CTA" document

Requirements & Drivers

Energy coverage down to 20 GeV (Discovery domain: GRBs, Dark Matter)

Good energy resolution, ~10-15%: (Lines, cutoffs)

> Rapid Slew (20 s) to catch flares: (Transients)

10x Sensitivity & Collection Area (Nearly every topic) Energy coverage up to 300 TeV (Pevatrons, hadron acceleration)

Large Field of view 8-10° (Surveys, extended sources, flares)

Angular resolution < 0.1° above most of E range (Source morphology)

CTA Design (S array)

Science Optimization under budget constraints

Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes (LST's)

Medium energies

100 GeV – 10 TeV 9.7 to 12 m diameter 25 telescopes (MST's/SCTs)

High energies

cherenkov

telescope array

Up to > 300 TeV 10 km² eff. area @ 10 TeV 4m diameter 70 telescopes

cta

Flux Sensitivity

cherenkov telescope array

Major sensitivity improvement & wider energy range

Galactic Discovery Reach

Galactic Discovery Reach

Galactic Discovery Reach

Current Galactic VHE sources (with distance estimates) HESS/ VERITAS

СТА

Survey speed: x300 faster than current instruments

Angular Resolution

Key Science Projects (KSPs)

Key Science Projects (KSPs)

cherenkov telescope array

23 m diameter
390 m² dish area
28 m focal length
1.5 m mirror facets

4.5° field of view 0.1° PMT pixels Camera Ø over 2 m

Carbon-fiber structure for 20 s positioning

Active mirror control

4 LSTs on South site 4 LSTs on North site

Prototype construction Underway (La Palma)

Medium Telescope (MST)

cherenkov telescope array

Prototype MST near DESY (Berlin)

100m² mirror dish area
16 m focal length
1.2 m mirror facets

8° field of view ~2000 x 0.18° PMT pixels

25 MSTs on South site 15 MSTs on North site

Prototype FlashCAM camera

Medium 2-mirror Telescope

Prototype SCT at Whipple Obs, Arizona

Schwarzschild-Couder Telescope (SCT)

cta

9.7 m primary
5.4 m secondary
5.6 m focal length, f/0.58
50 m² mirror dish area
PSF better than 4.5' across 8° FOV

8° field of view 11328 x 0.07° Si-PM pixels

→ Improved γ -ray angular resolution

Talk by V. Vassiliev – this session cherenkov telescope array

Small Sized Telescopes (SSTs) (Cta

cherenkov telescope array

- 3 different prototype designs
- 2 designs use two-mirror approaches (Schwarzschild-Couder design)
- All use Si-PM photosensors
- 8-10 m² mirror area, FOV > 9°

SST-1M Krakow, Poland Talk by C. Alispach – this session

SST-2M ASTRI Mt. Etna, Italy Talk by M.C. Maccarone – this session SST-2M GCT Meudon, France

Talk by H. Sol – Monday, 13:30-15:00

cherenkov telescope array

La Palma – CTA North

cherenkov telescope array

- Canary Islands, Spain
- Observatorio del Roque de los Muchachos
- Existing observatory, under management by Instituto de Astrofisica de Canarias (IAC)
- Site of LST 1 & existing MAGIC telescopes
- Current work: topographical study, building concepts, tender for geotechnical study soon

ESO PARANAL – CTA South

cherenkov telescope array

- Atacama Desert, Chile, south of Cerro Paranal
- Existing observatory, under management by European Southern Observatory (ESO)
- Near a set of existing (VLT) and future (ELT) telescopes

Cerro Armezones E=ELT Vulcano Llullaillaco 6739 m, 190 km east

Cherenkov Telescope Array Site

Cerro Paranal Very Large Telescope \bigcirc

C Marc-Andre Besel

ESO PARANAL – CTA South

cta

cherenkov telescope array

- Atacama Desert, Chile, south of Cerro Paranal
- Existing observatory, under management by European Southern Observatory (ESO)
- Near a set of existing (VLT) and future (ELT) telescopes

Cerro Armezones E-ELT

Current work: geotechnical studies (boreholes), topographical survey, concepts for roads, power, ducting, & buildings

> Cerro Paranal Very Large Telescope

> > 4 LSTs 25 MSTs 70 SSTs

Vulcano Llullaillaco 6739 m, 190 km east

C Marc-Andre Besel

CTA Phases & Timeline

cherenkov

telescope arrav

- 2016-7: Hosting agreements, site preparations start
- 2018: Start of construction
- Funding level at ~65% of required for baseline implementation
 - \rightarrow start with *threshold implementation*
 - \rightarrow additional funding & telescopes needed to complete baseline CTA
- Construction period of ~6 years
- Initial science with partial arrays possible before construction end

Summary

We've learned a lot from previous/present experiments

With many discoveries, VHE γ -ray astronomy has become a major and exciting field of research

Outstanding science potential and the power of the atmospheric Cherenkov technique \rightarrow CTA

Cherenkov Telescope Array (CTA)*

Outstanding sensitivity & resolution over wide energy range Far-reaching key science program Open observatory with all data released to public

- CTA prototyping/design is largely completed; now ready to develop both sites and enter pre-production of telescopes
- In next decade, CTA will provide data of a quality not yet seen in the HE/VHE γ-ray band

*We gratefully acknowledge financial support from the agencies and organizations listed here: http://www.cta-observatory.org/consortium_acknowledgments.

CTA Talks at ICRC 2017

cherenkov telescope array

GA Parallel, Friday, July 14: 16:30-18:30

Reпе Опд	GA325	Cherenkov Telescope Array: The Next Generation Gamma-ray Observatory			
Masahiro Teshima	GA202	Large Size Telescope of the Cherenkov Telescope Array			
Cyril Alispach	GA300	Performance of a small size telescope (SST-1M) camera for gamma-ray astronomy with the Cherenkov Telescope Array			
Maria Concetta Maccarone	GA022	ASTRI for the Cherenkov Telescope Array			
adimir Vassiliev GA051		Prototype 9.7m Schwarzschild-Coudler telescope for the Cherenkov Telescope Array: Project Overview			
Jan Ebr	GA077	Atmospheric calibration of the Cherenkov Telescope Array			

GA Parallel, Saturday, July 15: 13:30-15:00

Roberta Zanin	GA044	Observing the Galactic Plane with the Cherenkov Telescope Array
---------------	-------	---

GA Parallel, Monday, July 17: 13:30-15:00

	-	
Helene Sol C	GA123	Observing the sky at extremely high energies with CTA: Status of the GCT project

GA Parallel, Tuesday, July 18: 16:30-18:30

Tarek Hassan GA145 Extragalactic source population studies at very high energies in the Cherenkov Telescope Array era

GA Parallel, Wednesday, July 19: 16:30-18:30

David Kieda GA094 Stellar Intensity Interferometric Capabilities of IACT Arrays

DM Parallel, Wednesday, July 19: 16:30-18:30

Aldo Morselli	DM015	The Dark Matter Programme of the Cherenkov Telescope Array
---------------	-------	--

CTA Posters at ICRC 2017 |

cherenkov telescope array

[CRI097] A Monte Carlo simulation study for cosmic-ray chemical composition measurement with Cherenkov Telescope Array Board #: 147

Presented by Michiko OHISHI on 18 Jul 2017 at 15:00

[GA019] Design, development and characterization of a calibration system for the camera of the Large Size Telescope proposed for CTA Board #: 173 Presented by Michele PALATIELLO on 13 Jul 2017 at 15:00

[GA021] Atmospheric monitoring and array calibration in CTA using the Cherenkov Transparency Coefficient Board #: 179 Presented by Stanislav STEFANIK on 13 Jul 2017 at 15:00

[GA023] Tools and Procedures for the CTA Array Calibration Board #: 185 Presented by Maria Concetta MACCARONE on 13 Jul 2017 at 15:00

[GA024] Sun/Moon photometer for Cherenkov Telescope Array \u2013 first results Board #: 240 Presented by Jakub JURYSEK on 13 Jul 2017 at 15:00

[GA039] Performance of the Cherenkov Telescope Array Board #: 150 Presented by Gernot MAIER on 13 Jul 2017 at 15:00

[GA040] Raman LIDARs for atmospheric calibration in CTA Board #: 230 Presented by Georges VASILEIADIS on 13 Jul 2017 at 15:00

[GA041] Control Software for a Small-Size Telescope (SST-1M) proposed for the Cherenkov Telescope Array Board #: 188 Presented by Roland WALTER on 13 Jul 2017 at 15:00

[GA042] End-to-end data acquisition pipeline for the Cherenkov Telescope Board #: 187 Presented by Roland WALTER on 13 Jul 2017 at 15:00

CTA Posters at ICRC 2017

cherenkov telescope array

[GA059] Studies of the nature of the low-energy, gamma-like background for Cherenkov Telescope Array Board #: 214 Presented by Julian SITAREK on 13 Jul 2017 at 15:00

[GA061] Towards final characterization and performance of the GCT prototype telescope structure for CTA Board #: 176 Presented by Cedric PERENNES on 13 Jul 2017 at 15:00

[GA102] Searching for PeVatrons in the CTA Galactic Plane Survey Board #: 149 Presented by Cyril TRICHARD on 13 Jul 2017 at 15:00

[GA131] A Compact High Energy Camera (CHEC) for the GCT of CTA Board #: 183 Presented by Harm SCHOORLEMMER on 13 Jul 2017 at 15:00

[GA136] Prototype 9.7m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system Board #: 209 Presented by Daniel NIETO on 13 Jul 2017 at 15:00

[GA141] Baseline telescope layouts of the Cherenkov Telescope Array Board #: 233 Presented by Paolo CUMANI on 13 Jul 2017 at 15:00

[GA146] Exploring deep learning as an event classification method for the Cherenkov Telescope Array Board #: 210 Presented by Daniel NIETO on 13 Jul 2017 at 15:00

[GA147] A Trigger Interface Board to manage trigger and timing signals in CTA Large-Sized Telescope and Medium-Sized Telescope camera Board #: 208 Presented by Marcos LOPEZ on 13 Jul 2017 at 15:00

[GA155] ASTRI SST-2M prototype and mini-array simulation chain, data reduction software, and archive in the framework of the CTA Board #: 184 Presented by Maria Concetta MACCARONE on 13 Jul 2017 at 15:00

CTA Posters at ICRC 2017 III

cherenkov telescope array

[GA158] A pointing solution for the medium size telescopes for the Cherenkov Telescope Array Board #: 186 Presented by Domenico TIZIANI on 13 Jul 2017 at 15:00

[GA185] Studying cosmological gamma-ray propagation with the Cherenkov Telescope Array Board #: 099 Presented by Florian GATÉ on 13 Jul 2017 at 15:00

[GA279] Gammapy - high level data analysis for extragalactic science cases with the Cherenkov Telescope Array Board #: 118 Presented by Julien LEFAUCHEUR on 13 Jul 2017 at 15:00

[GA284] The ARCADE Raman Lidar and atmospheric simulations for the Cherenkov Telescope Array Board #: 231 Presented by Laura VALORE on 13 Jul 2017 at 15:00

[GA166] Development of a strategy for calibrating the novel SiPM camera of the SST-1M telescope proposed for the Cherenkov Telescope Array Board #: 238 Presented by Imen AL SAMARAI on 13 Jul 2017 at 15:00

[GA278] Gammapy - A prototype for the CTA science tools Board #: 215 Presented by Matteo CERRUTI on 13 Jul 2017 at 15:00

Visit the CTA Exhibit!

therestory an observatory for ground-based gamma-ray astronomy

BACKUP

cherenkov telescope array

Important MWL/MM Synergies

.0

a.

×.

.0

-**n**-

.а.

. 🕰

- K

. 6

. 1

cherenkov telescope array

cta

. 6.

3074 3072 3070	307, 302	2012	2020	2022	2024	2022	2024	2020
← CTA Prototypes	⇒		Science V	erification =	⇒ User Op er	ation);
Low Erequency Badio								
LOFAR	: :							;
MWA	MWA (ungrade	9	1	:	:	:	:	
VLITE on IVLA	> (~2018?	LOBO)	,					
Mid-Hi Frequency Radio	(FAST							j:
BU A VLBA eMertin ATCA EV	N IVN KVN VEDA	LEAGET (many other su	aller facilitie	e)	:		
ASKAP	, j • 1 , 1 • 1 , • 1 A &	4, DDA, ODT		:	:	:	:	
Kat7> MeerKAT> SKA Phase	1							
			SKA	1&2 (Lo/Mid)	•		· · · · · · · · · · · · · · · · · · ·
(sub)Millimeter Radio				:	:	:	:	
JCMT, LLAMA, LMT, IRAM, NO	EMA, SMA, SMT, S	PT, Nanten2, M	opra, Nobeyai	на (налу (other smaller	facilities))
ALMA								
EHT quototy	pe — > tull ops)							
Optical Transient Factories/Tra	ansient Finders							
iPalomar Transient Factory	-> (~2017) Zwicky	TF		T (buildup to	full survey a	node)		
PanSTARRS1 -> PanSTARRS2				- (Sump to			:	
Black	GEM (Meerlicht sin	igle dish prototy	pe in 2016)					
Optical/IR Large Facilities								
VLT, Keck, GTC, Gemini, Magella	n(many other sma	ller facilities)						
HST		TRUST			1	'		WFIRST
		<u>J (1</u>	:					GMT
X-ray			÷	l el	ELT (full ope	ration 2024)	& TMT (time	tine less clear)?
Swift (incl. UV/optical)								
XMM & Chandra								
NUSTAR				(IXPE				ATHENA (2028
ASTROSAT	· (IISZAFT							
	NICEP	1		(VAL	98-0T)	
	i el	ROSITA		(GV1			
Gamma-ray		!		SVOM 6	ncl. soft cam	ma_ray + onf	ical ground e	ements)
INTEGRAL	; ;			1010114	and other Brane		Dia Ground C.	
Fermi								ŕ
HAWC)	:	:	; Camma400
DAMPE								(2025+)
Gray Wayes		LHAAS	SO .		·)
Advanced LIGO + Ad	wanced VIRGO (201	17)	(- upgrade f	to include LIC	OIndia-)			Einstein Tel?
		KAC	RA					- j
Neutrinos : :	:	:		:	:	:		
IceCub	e (SINCE 2011)		T MARON	TA /A DOLL]	ceCube-Gen2?
ANIARES	KWISNET-1		KNISNE	I-2 (ARCA)				
UHE Cosmic Rays								
Telescope Ar	ray ⇒ upgra	ide to TAx4						
			a sha dha dha ar a sh					1

Caveat: Observatory timelines are very uncertain; this represents a notional picture based on available information

cherenkov telescope array

Science with the Cherenkov Telescope Array

Science with CTA

200 page document describing core CTA science

Will soon be put on axViv and become a regular book

CTA: An Open Observatory

CTA South Array

Telescope Types

